THIS SITE

Information for

You are here

Researchers theoretically demonstrate the detection of a single nuclear spin at room temperature

Tuesday, May 12, 2015

For the first time, a researcher at the University of Waterloo has theoretically demonstrated that it is possible to detect a single nuclear spin at room temperature, which could pave the way for new approaches to medical diagnostics.

Published in the journal Nature nanotechnology this week, Amir Yacoby from the University of Waterloo, along with colleagues from University of Basel and RWTH Aachen University, propose a theoretical scheme that could lead to enhanced Nuclear Magnetic Resonance (NMR) imaging of biological materials in the near future by using weak magnetic fields.

Measuring spin is routine in current imaging devices such as Magnetic Resonance Imaging because nuclear spin generates magnetic fields. However, weak magnetic fields such as those at the atomic level are difficult to detect using current technology. Add noise into the field and the detection is more difficult. Yet, according to the new paper, when a magnet is placed into the mix, detection can be achieved with weak fields.

“There is great interest in measuring the signatures of weak magnetic fields,” said Yacoby, Distinguished Research Chair in Condensed Matter in the Department of Physics and Astronomy and associate member of the Institute for Quantum Computing at the University of Waterloo. “Our proposal could lead to better imaging for nanoscale nuclear magnetic resonance (NMR) on biological material in noisy conditions.”

Think about a heavy person sitting on a swing. A very strong person could push the swing. It’s also possible for a smaller, weaker person to move the swing periodically with less force as each push results in a larger motion. This is how we swing ourselves – even with a weak source, it’s possible to eventually get a large response.

Yacoby and his colleagues theorize that by placing a tiny ferromagnetic particle between a nitrogen-vacancy quantum bit (qubit) magnetometer and the source – the nuclear spin – the sensitivity of the magnetometer is enhanced. The strongly correlated electron spins in the magnet and their collective excitation can be used to enhance the weak signal from the source. Modulating the source will slowly resonate with the magnet and start to build strength, just like the swing. A qubit magnetometer can then read the larger response of the magnet.

Acting as an amplifier, the ferromagnetic particle can detect a single spin at a distance of 30 nanometres (nm) at room temperature. Previous attempts without a magnet required placing the detector impossibly close to the source, just 1-2 nm. Adding the magnetic particle allows the sensor to be further from the system, lessening the chance that the sensor will destroy it, and yet still able to detect a measureable signal.

The paper theoretically analyzes the feasibility of the fully classical scheme. Conceptually the proposal is quite simple but, while the implementation has its challenges, researches believe it is far less fragile than a quantum scheme. These results, in combination with Yacoby’s other research on improving resolution, could see enhanced NMR imaging of biological materials in the near future.

About the University of Waterloo

In just half a century, the University of Waterloo, located at the heart of Canada's technology hub, has become one of Canada's leading comprehensive universities with 35,000 full- and part-time students in undergraduate and graduate programs. A globally focused institution, celebrated as Canada’s most innovative university for 23 consecutive years, Waterloo is home to the world's largest post-secondary co-operative education program and encourages enterprising partnerships in learning, research and discovery. In the next decade, the university is committed to building a better future for Canada and the world by championing innovation and collaboration to create solutions relevant to the needs of today and tomorrow. For more information about Waterloo, please visit uwaterloo.ca.

-30-

Media Contact

Nick Manning
University of Waterloo
519-888-4451
226-929-7627
www.uwaterloo.ca/news
@uWaterlooNews

Attention broadcasters: Waterloo has facilities to provide broadcast quality audio and video feeds with a double-ender studio. Please contact us to book.

  1. 2018 (28)
    1. October (6)
    2. September (1)
    3. August (2)
    4. July (1)
    5. June (1)
    6. May (3)
    7. April (4)
    8. March (5)
    9. February (3)
    10. January (2)
  2. 2017 (36)
    1. December (3)
    2. November (3)
    3. October (4)
    4. September (3)
    5. August (1)
    6. July (3)
    7. June (2)
    8. May (4)
    9. April (5)
    10. March (6)
    11. February (1)
    12. January (1)
  3. 2016 (46)
    1. December (5)
    2. November (2)
    3. October (6)
    4. September (3)
    5. August (1)
    6. June (5)
    7. May (6)
    8. April (8)
    9. March (5)
    10. February (3)
    11. January (2)
  4. 2015 (40)
  5. 2014 (31)
  6. 2013 (28)
  7. 2012 (34)
  8. 2011 (31)
  9. 2010 (55)
  10. 2009 (29)
  11. 2008 (32)
  12. 2007 (27)
  13. 2006 (16)
  14. 2005 (4)

Educational programs

QKD - Quantum Key Distribution Summer School

USEQIP - Undergraduate School on Experimental Quantum Information Processing

QCSYS - Quantum Cryptography School for Young Students

Quantum Innovators logo