Matteo Mariantoni

Matteo Mariantoni
Associate Professor
Location: QNC 3316
Phone: 519-888-4567 x39056


Dr. Mariantoni has a strong background in cutting-edge research on superconducting qubits and circuit quantum electrodynamics. He specializes in the experimental realization of low-level microwave detection schemes and pulsing techniques that allow for the measurement of ultra-low quantum signals generated by superconducting qubits coupled to on-chip resonators.

Research Interests

  • Quantum Computing
  • Quantum Error Correction
  • Digital Quantum Emulations
  • Superconducting Quantum Circuits
  • Quantum Science

Scholarly Research

Experimental implementation of quantum error correction based on surface codes: Surface codes are the most promising venue for the experimental implementation of quantum error correction, which allows to detect and correct errors occurring on single quantum bits (qubits) [A.G. Fowler, M. Mariantoni, J.M. Martinis, and A.N. Cleland, Phys. Rev. A 86, 032324 (2012)]. In order to realize a surface code, high-fidelity two-qubit gates and fast qubit read-out are required. Mariantoni’s team at IQC is developing a novel two-qubit gate based on on-chip harmonic oscillators (resonators) that will make it possible to reach fidelities as high as 99.95% [F.W. Strauch, T.G. McConkey, A.G. Fowler, and M. Mariantoni, in preparation], well above the threshold for error correction required by surface codes. In addition, Mariantoni’s team is pursuing a read-out technique based on a shelving mechanisms [B.G.U. Englert et al., Phys. Rev. B 81, 134514 (2010)] that will allow for fast single-shot qubit measurement. Both two-qubit gates and read-out will be performed on a 3D-wired chip, where wires are connected to the chip from above instead of by lateral bonding. 3D wiring is Mariantoni’s invention and will represent a key towards a truly scalable quantum computing architecture. It is also worth mentioning that Mariantoni’s group has established a fruitful collaboration with Dr. Zbig R. Wasilewski (Waterloo Institute for Nanotechnology), with whom is developing ultra-high quality aluminum films. Implementation of the Jaynes-Cummings-Hubbard model: The implementation of a surface code necessitates arrays of superconducting qubits and resonators. The latter are characterized by photonic excitations in the microwave regime. It is thus natural to pursue experiments on the quantum simulation of the Jaynes-Cummings-Hubbard model, a special type of Bose-Hubbard model, that will make it possible to study the phase transition of photons from a superfluid to an insulator state. Theory for superconducting quantum circuits and signals: Mariantoni is presently developing a self-contained formalism for the derivation of quantum-mechanical Hamiltonians of superconducting quantum circuits as well as for the quantum-mechanical treatment of signals generated by such circuits.


  • 2009 PhD Physics, Technical University Munich, München, Germany
  • 2003 MSc Physics, Chalmers University of Technology, Gothenburg, Sweden


  • 2014, Early Researcher Award, Ontario Ministry of Research and Innovation
  • 2013, Alfred P. Sloan Research Fellowship, Alfred P. Sloan Foundation

Affiliations and Volunteer Work

  • Faculty, Institute for Quantum Computing


  • PHYS 242 - Electricity and Magnetism 1
    • Taught in 2018, 2019, 2020, 2021, 2022, 2023
  • PHYS 342 - Electricity and Magnetism 2
    • Taught in 2018, 2019, 2020, 2021, 2022
  • PHYS 442 - Electricity and Magnetism 3
    • Taught in 2020

* Only courses taught in the past 5 years are displayed.

Selected/Recent Publications

  • Yu Chen, P Roushan, D Sank, C Neill, Erik Lucero, Matteo Mariantoni, R Barends, B Chiaro, J Kelly, A Megrant, JY Mutus, PJJ O'Malley, A Vainsencher, J Wenner, TC White, Yi Yin, AN Cleland, John M Martinis Emulating weak localization using a solid-state quantum circuit Nature communications 5 (2014)
  • J Tournet, D Gosselink, GX Miao, M Jaikissoon, D Langenberg, TG McConkey, M Mariantoni, ZR Wasilewski Growth and characterization of epitaxial aluminum layers on gallium-arsenide substrates for superconducting quantum bits Superconductor Science and Technology 29 (6), 064004 (2016)
  • JH Béjanin, TG McConkey, JR Rinehart, CT Earnest, CRH McRae, D Shiri, JD Bateman, Y Rohanizadegan, B Penava, P Breul, S Royak, M Zapatka, AG Fowler, M Mariantoni The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing arXiv preprint arXiv:1606.00063 (2016)
  • J Wenner, Yi Yin, Erik Lucero, R Barends, Yu Chen, B Chiaro, J Kelly, M Lenander, Matteo Mariantoni, A Megrant, C Neill, PJJ O’Malley, D Sank, A Vainsencher, H Wang, TC White, AN Cleland, John M Martinis Excitation of superconducting qubits from hot nonequilibrium quasiparticles Physical review letters 110 (15), 150502

In The News