Shapes

Welcome to Pure Mathematics

We are home to 30 faculty, four staff, approximately 60 graduate students, several research visitors, and numerous undergraduate students. We offer exciting and challenging programs leading to BMath, MMath and PhD degrees. We nurture a very active research environment and are intensely devoted to both ground-breaking research and excellent teaching.


News

Friday, September 29, 2023

Spring 2023 Graduands

Congratulations to Clement Wan, MMath and Eric Boulter, PhD, who convocated in Spring 2023. Best of luck in your future endeavours!

Events

Wednesday, April 2, 2025 3:30 pm - 5:00 pm EDT (GMT -04:00)

Harmonic Analysis Learning Seminar

Aleksa Vujicic, University of Waterloo

Fourier Algebras of Semi-Direct Product Groups of Local Fields

We look at Fourier Algebras of Semi-Direct Product Groups of Local Fields.

MC 5403

Friday, April 4, 2025 3:30 pm - 4:30 pm EDT (GMT -04:00)

Geometry & Topology Seminar

Yidi Wang, University of Waterloo

Local-global principles on stacky curves and its application in solving generalized Fermat equations. 

The primitive solutions of certain generalized Fermat equations, i.e., 
Diophantine equations of the form Ax^p+By^q = Cz^r, can be studied as 
integral points on certain stacky curves. In a recent paper by Bhargava and 
Poonen, an explicit example of such a curve of genus 1/2 violating 
local-global principle for integral points was given. However, a general 
description of stacky curves failing the local-global principle is 
unknown. In this talk, I will discuss our work on finding the primitive 
solutions to equation of the form when (p, q, r) = (2,2,n) by studying local-global principles for integral points on stacky curves constructed from such equations. 
The talk is based on a joint project with Juanita Duque-Rosero, 
Christopher Keyes, Andrew Kobin, Manami Roy and Soumya Sankar. 

MC 5417

Friday, April 4, 2025 5:30 pm - 6:30 pm EDT (GMT -04:00)

Grad Student Colloquium

Nicolas Banks, University of Waterloo

Non-Trivial Theorems with Trivial Proofs

One of the most fruitful things we can do as mathematicians is to think deeply about simple things. As students and researchers, perhaps we come across results with simple proofs and believe that not much can be learned from them. In this talk, I will challenge this misconception by diving into three important, non-trivial theorems with seemingly trivial proofs - Desargue's Theorem of planar geometry, the finite intersection property of compact sets, and Lagrange's Theorem from group theory. These will demonstrate three reasons that a profound truth need not be complicated.

MC 5501

(snacks at 17:00)