Shapes

Welcome to Pure Mathematics

We are home to 30 faculty, four staff, approximately 60 graduate students, several research visitors, and numerous undergraduate students. We offer exciting and challenging programs leading to BMath, MMath and PhD degrees. We nurture a very active research environment and are intensely devoted to both ground-breaking research and excellent teaching.


News

More than 100 researchers and students from across Canada and around the world attended the 53rd annual Canadian Operator Algebras Symposium (COSY), which took place from May 26-30 at the University of Waterloo.

Events

Monday, February 2, 2026 1:00 pm - 2:30 pm EST (GMT -05:00)

Computability Learning Seminar

Beining Mu, University of Waterloo

Algorithmic randomness and Turing degrees 3

In this seminar we talk about coding strategies to encode an arbitrary set into a 1-random set in a sense that every set is wtt-reducible to a 1-random set. We will also have a review of the jump operator and lowness of Turing degrees to explore the distribution of 1-random sets in terms of Turing degrees.

MC 5403

Monday, February 2, 2026 2:30 pm - 4:00 pm EST (GMT -05:00)

Pure Math Colloquium

Luke Postle, University of Waterloo

A New Proof of the Existence Conjecture and its Applications to Extremal and Probabilistic Design Theory

We discuss the recently developed method of refined absorption and how it is used to provide a new proof of the Existence Conjecture for combinatorial designs. This method can also be applied to resolve open problems in extremal and probabilistic design theory while providing a unified framework for these problems. Crucially, the main absorption theorem can be used as a ``black-box'' in these applications obviating the need to reprove the absorption step for each different setup.

MC 5403

Tuesday, February 3, 2026 10:00 am - 11:00 am EST (GMT -05:00)

Number Theory Seminar

Carlo Pagano, Concordia University

Reconstructing curves from their Galois set of points

We will talk about reconstructing a generic pair of elliptic curves over a number field K from their Galois module of K-bar points.

MC 5479