Shapes

Welcome to Pure Mathematics

We are home to 30 faculty, four staff, approximately 60 graduate students, several research visitors, and numerous undergraduate students. We offer exciting and challenging programs leading to BMath, MMath and PhD degrees. We nurture a very active research environment and are intensely devoted to both ground-breaking research and excellent teaching.


News

More than 100 researchers and students from across Canada and around the world attended the 53rd annual Canadian Operator Algebras Symposium (COSY), which took place from May 26-30 at the University of Waterloo.

Events

Thursday, January 8, 2026 2:30 pm - 3:45 pm EST (GMT -05:00)

Differential Geometry Working Seminar

Spencer Kelly, University of Waterloo

Proper Group Actions and the Slice Theorem in Finite Dimensions

In this talk we will begin by reviewing important properties of group actions on manifolds, and characteristics of proper actions. We then define isotropy and orbit types, discuss the slice theorem (on finite dimensional manifolds), and go over non-trivial examples of slice bundles. This will set us up to conclude with the principal orbit theorem and the stratification of the orbit space.

MC 5403

Thursday, January 8, 2026 4:00 pm - 5:20 pm EST (GMT -05:00)

Analysis Seminar

Pavel Zatitskii, University of Cincinnati

Extremal problems and monotone rearrangement on averaging classes

We will discuss integral extremal problems on the so-called averaging classes of functions, meaning classes defined in terms of averages of their elements, such as BMO, VMO, and Muckenhoupt weights. A typical extremal problem we consider involves an integral inequality, such as the John--Nirenberg inequality for BMO. One common way to formulate such questions is using Bellman functions. It turns out that such Bellman functions are solutions to specific boundary value problems, formulated in terms of convex geometry. We will also discuss the monotone rearrangement operator acting on the averaging classes, which arises naturally in this context and is useful when solving extremal problems.

MC 5417

Wednesday, January 14, 2026 9:30 am - 11:30 am EST (GMT -05:00)

PhD. Defence

Zhihao Zhang, University of Waterloo

Translation-Invariant Function Algebras of Compact Groups

Let G be a compact group and let Trig(G) denote the algebra of trigonometric polynomials of G. For a translation-invariant subalgebra A of Trig(G), one can consider the completions of A under the uniform norm and the Fourier norm. We show in Chapter 2 using techniques developed by Gichev that both completions have the same Gelfand spectrum, answering a question posed in a paper of Spronk and Stokke. In the same paper, a theorem describing of the Gelfand spectrum of the Fourier completion of finitely-generated such algebras A was given. In Chapter 3, we extend this theorem to the case of countably-generated, translation-invariant subalgebras, A. In Chapter 4, we give a brief overview of the Beurling--Fourier algebra, a weighted variant of the classical Fourier algebra studied by Ludwig, Spronk and Turowska. The addition of a weight for these particular algebras invites new spectral data in contrast to its classical counterpart. In Chapter 5, we show for Beurling--Fourier algebras of compact abelian groups, G, that its weight can be used to construct a seminorm on a real vector space generated by the dual of G that remembers the spectral data of the algebra.

MC 2009