Welcome to Pure Mathematics
We are home to 30 faculty, four staff, approximately 60 graduate students, several research visitors, and numerous undergraduate students. We offer exciting and challenging programs leading to BMath, MMath and PhD degrees. We nurture a very active research environment and are intensely devoted to both ground-breaking research and excellent teaching.
News
Two Pure Math professors win Outstanding Performance Awards
The awards are given each year to faculty members across the University of Waterloo who demonstrate excellence in teaching and research.
Pure Math PhD student wins Amit and Meena Chakma Award for Exceptional Teaching
The award ($1000), which is given to up to four recipients annually, recognizes excellence in teaching by students, including intellectual vigour, skill in communication and presentation of subject matter, and concern for the needs of students.
Spring 2023 Graduands
Congratulations to Clement Wan, MMath and Eric Boulter, PhD, who convocated in Spring 2023. Best of luck in your future endeavours!
Events
Logic Seminar
Riley Thornton, Carnegie Mellon University
Topological weak containment
Weak containment is a notion from ergodic theory with a wide variety of applications-- in dynamics, combinatorics, group theory, model theory, and beyond-- and a correspondingly wide variety of equivalent definitions. In this talk, I'll report on a project to adapt the theory to topological dynamics.
MC 5479
Geometry and Topology Seminar
Viktor Majewski, Humboldt University Berlin
Resolutions of Spin(7)-Orbifolds
In Joyce’s seminal work, he constructed the first examples of compact manifolds with exceptional holonomy by resolving flat orbifolds. Recently, Joyce and Karigiannis generalised these ideas in the G2 setting to orbifolds with Z2-singular strata. In this talk I will present a generalisation of these ideas to Spin(7) orbifolds and more general isotropy types. I will highlight the main aspects of the construction and the analytical difficulties.
MC 5479
Geometry and Topology Seminar
Candace Bethea, Duke University
The local equivariant degree and equivariant rational curve counting
I will talk about joint work with Kirsten Wickelgren on defining a global and local degree in stable equivariant homotopy theory. We construct the degree of a proper G-map between smooth G-manifolds and show a local to global property holds. This allows one to use the degree to compute topological invariants, such as the equivariant Euler characteristic and Euler number. I will discuss the construction of the equivariant degree and local degree, and I will give an application to counting orbits of rational plane cubics through 8 general points invariant under a finite group action on CP^2. This gives the first equivariantly enriched rational curve count, valued in the representation ring and Burnside ring. I will also show this equivariant enrichment recovers a Welchinger invariant in the case when Z/2 acts on CP^2 by conjugation.
MC 5417