Computability Theory Learning SeminarExport this event to calendar

Thursday, November 17, 2022 — 10:30 AM EST

Xinyue (Cynthia) Xie & Layth Al-Hellawi, Department of Pure Mathematics, University of Waterloo

"Effectiveness properties of the Walker's Cancellation Theorem - Part II"

This is part II of a series of 4 talks in which we present and build upon the work in Deveau's PhD thesis and examine Walker's Cancellation Theorem from a computability theory perspective. In this talk, we will present Deveau's Theorem 4.2. Relevant computability theory concepts, including the recursion theorem, will also be introduced. We will consider a function F which, given the index for a computable group E := A ⊕ G = B ⊕ H, the indices for computable relations determining A, B, G, and H and the generators a and b of the cyclic groups A and B, outputs an index for a computable isomorphism between G and H. We will follow Deveau's proof and show that such a function F cannot be computable. This motivates our discussion of Turing degrees and the question of whether Fand the halting set are Turing equivalent in later talks.

MC 5417

Event tags 

S M T W T F S
26
27
28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
  1. 2023 (113)
    1. April (2)
    2. March (51)
    3. February (33)
    4. January (27)
  2. 2022 (179)
    1. December (8)
    2. November (31)
    3. October (24)
    4. September (17)
    5. August (9)
    6. July (15)
    7. June (14)
    8. May (13)
    9. April (14)
    10. March (15)
    11. February (12)
    12. January (7)
  3. 2021 (135)
  4. 2020 (103)
  5. 2019 (199)
  6. 2018 (212)
  7. 2017 (281)
  8. 2016 (335)
  9. 2015 (211)
  10. 2014 (235)
  11. 2013 (251)
  12. 2012 (135)