Candace Bethea, Duke University
The local equivariant degree and equivariant rational curve counting
I will talk about joint work with Kirsten Wickelgren on defining a global and local degree in stable equivariant homotopy theory. We construct the degree of a proper G-map between smooth G-manifolds and show a local to global property holds. This allows one to use the degree to compute topological invariants, such as the equivariant Euler characteristic and Euler number. I will discuss the construction of the equivariant degree and local degree, and I will give an application to counting orbits of rational plane cubics through 8 general points invariant under a finite group action on CP^2. This gives the first equivariantly enriched rational curve count, valued in the representation ring and Burnside ring. I will also show this equivariant enrichment recovers a Welchinger invariant in the case when Z/2 acts on CP^2 by conjugation.
MC 5417