Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Wednesday, September 18, 2024 2:00 pm - 3:00 pm EDT (GMT -04:00)

Computability Learning Seminar

Joey Lakerdas-Gayle, University of Waterloo

Fundamentals of Computability Theory 1

This semester in the Computablility Theory Learning Seminar, we will be learning general Computability Theory following Robert Soare's textbook. This week, we will prove some of the fundamental theorems about Turing machines in Chapter 1 and 2.

MC 5403

Wednesday, September 18, 2024 3:30 pm - 5:00 pm EDT (GMT -04:00)

Differential Geometry Working Seminar

Aleksandar Milivojevic, University of Waterloo

Formality in rational homotopy theory

I will introduce the notion of formality of a manifold and will discuss some topological implications of this property, together with a computable obstruction to formality called the triple Massey product. I will then survey a conjecture relating formality and the existence of special holonomy metrics.

MC 5479

Friday, September 20, 2024 3:30 pm - 4:30 pm EDT (GMT -04:00)

Geometry and Topology Seminar

Adam Logan, University of Waterloo, TIMC and Carleton University
Computational exploration of Hilbert modular surfaces

There are at least two viewpoints on the modularity of elliptic curves over the rationals: it can be seen either as an analytic and representation-theoretic statement that the L-function of a curve is associated to a modular form, or as a geometric statement that the curve is a quotient of a modular curve. It is not clear that these remain equivalent for elliptic curves over number fields. For elliptic curves over real quadratic fields, analytic modularity is now known, and a form of geometric modularity was conjectured 40 years ago by Oda. Recent advances in the computation of rings of Hilbert modular forms have made it possible to verify the geometric modularity conjecture in special cases. In this talk I will describe my work in this direction, including some interesting auxiliary algebraic surfaces that arise in the course of the computations.

MC 5417

Monday, September 23, 2024 2:30 pm - 3:30 pm EDT (GMT -04:00)

Pure Math Dept Colloquium

Robert Haslhofer, University of Toronto

Mean curvature flow through singularities

A family of surfaces moves by mean curvature flow if the velocity at each point is given by the mean curvature vector. Mean curvature flow first arose as a model of evolving interfaces in material science and has been extensively studied over the last 40 years. In this talk, I will give an introduction and overview for a general mathematical audience. To gain some intuition we will first consider the one-dimensional case of evolving curves. We will then discuss Huisken's classical result that the flow of convex surfaces always converges to a round point. On the other hand, if the initial surface is not convex we will see that the flow typically encounters singularities. Getting a hold of these singularities is crucial for most striking applications in geometry, topology and physics. In particular, we will see that flow through conical singularities is nonunique, but flow through neck singularities is unique. Finally, I will report on recent work with various collaborators on the classification of noncollapsed singularities in R^4.

MC 5501

Tuesday, September 24, 2024 10:30 am - 11:20 am EDT (GMT -04:00)

Number Theory Seminar

Alex Cowan, University of Waterloo

Statistics of modular forms with small rationality fields

We present (i) a new database of weight 2 holomorphic modular forms, and (ii) a new statistical methodology for assessing probabilistic heuristics using arithmetic data. With this methodology we discover examples of non-random behavior and strange behavior in our dataset and beyond.  This is joint work with Kimball Martin.

MC 5479

Tuesday, September 24, 2024 11:00 am - 12:00 pm EDT (GMT -04:00)

Algebraic Geometry Working Seminar

Jiahui Huang, University of Waterloo

Various de Rham cohomologies in algebraic geometry

De Rham's theorem states that the de Rham cohomology of a smooth manifold is isomorphic to its singular cohomology. Various generalizations of the de Rham cohomology exist in algebraic geometry. In this talk we will take a look at algebraic de Rham cohomology for singular varieties, Chiral de Rham cohomology for smooth schemes, and derived de Rham cohomology for derived stacks.

MC 5403

Tuesday, September 24, 2024 2:00 pm - 3:00 pm EDT (GMT -04:00)

Logic Seminar

Dicle Mutlu, McMaster University

Residually Dominated Groups

A dominated type refers to a type that is controlled by its restriction to certain sorts in the language. The concept was first introduced as stable domination for algebraically closed valued fields by Haskell, Hrushovski, and Macpherson, and was later extended to residue field domination in henselian fields of equicharacteristic zero in various studies. In the algebraically closed case, Hrushovski and Rideau-Kikuchi applied stable domination in the group setting, introducing stably dominated groups to study interpretable groups and fields in the theory. In this talk, we extend the notion of stably dominated groups to residually dominated groups in henselian fields of equicharacteristic zero, discussing how, in this setting, domination can be witnessed by a group homomorphism. This is joint work with Paul Z. Wang.

MC 5479

Wednesday, September 25, 2024 2:00 pm - 3:00 pm EDT (GMT -04:00)

Computability Learning Seminar

Joey Lakerdas-Gayle, University of Waterloo

Fundamentals of Computability Theory 2

We will introduce priority arguments to construct interesting computability-theoretic structures, following Robert Soare's textbook.

MC 5403

Wednesday, September 25, 2024 3:30 pm - 5:00 pm EDT (GMT -04:00)

Special Geometry & Topology Seminar

Lucia Martin Merchan, University of Waterloo

About formality of compact manifolds with holonomy G2

The connection between holonomy and rational homotopy theory was discovered by Deligne, Griffiths, Morgan, and Sullivan, who proved that compact Kähler manifolds are formal. This led to the conjecture that compact manifolds with special and exceptional holonomy should also be formal. In this talk, I will discuss my recent preprint arXiv:2409.04362, where I disprove the conjecture for holonomy G2 manifolds.

MC 5479

Friday, September 27, 2024 3:30 pm - 4:30 pm EDT (GMT -04:00)

Geometry and Topology Seminar

Roberto Albesiano, University of Waterloo

A degeneration approach to Skoda’s division theorem

Let h1, …, hr be fixed holomorphic sections of E* ⊗ G → X, where E,G are holomorphic line bundles over a Stein manifold X. Is it always possible to write a holomorphic section g of G as a linear combination g = h1 ⊗ f1 + … + hr ⊗ fr , with f1, …, fr holomorphic sections of E? In 1972, H. Skoda proved a theorem addressing this question and giving L2 bounds on the minimal-L2-norm solution. I will sketch a new proof of a Skoda-type theorem inspired by a degeneration argument of B. Berndtsson and L. Lempert. In particular, we will see how to obtain L2 bounds on the solution (f1, …, fr) with minimal L2 norm by deforming a weight on the space of all linear combinations v1 ⊗ f1 + … + vr ⊗ fr to single out the linear combination h1 ⊗ f1 + … + hr ⊗ fr we are interested in.

MC 5417