Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:

ABSTRACT:  Chain architecture or topology of polymers is a critically important structural parameter governing intrinsically their physical properties and applications.  The rapid developments in polymerization techniques, particularly “living”/controlled polymerization techniques, in the past two decades have enabled the precision synthesis of novel polymers having a broad class of complex yet well-defined chain architectures from different monomer stocks. 

ABSTRACT:  Vascular cells adapt and respond to biomechanical forces.  The focal nature of most cardiovascular diseases has been linked to a dysfunctional response of endothelial cells and blood components to local hemodynamic forces.  My lab studies the role of hemodynamic forces in the initiation, progression and treatment of cardiovascular diseases.  In this talk I will present work we have done using three dimensional cell culture models to simulate the vascular hemodynamic environment in order to answer questions on how endothelial cells (ECs) and blood components respo

ABSTRACT:  Solid oxide fuel cell (SOFC) is an efficient electrochemical device that directly converts the chemical energy of a fuel into electricity. The conventional Ni/YSZ anode of SOFC accumulates carbon when operated in hydrocarbon fuels. The accumulated carbon degrades cell performance and eventually damages the anode microstructure.

The addition of carbon-tolerance enhancing materials (Cu, BaO) helps to reduce the carbon accumulation at Ni/YSZ anode and thereby improve cell performance.

ABSTRACT:  Consumption of fossil fuels along with accelerated deforestation is leading to a significant increase in concentration of greenhouse gases (e.g., CO2) in the atmosphere. Carbon Capture, Utilization and Storage (CCUS) is considered a promising alternative to lower the amount of CO2 emissions. This talk will briefly discuss technical and environmental aspects of three particular cases in the context of CO2 utilization (or/and conversion) and storage processes.

ABSTRACT:  This presentation describes my recent work  in developing small scale fluid devices, microfluidics, for energy applications and CO2 sequestration. Microfluidics has emerged over the last two decades with applications in biomedical diagnostics, environmental monitoring, and life sciences research.

ABSTRACT:  Converting sunlight into chemical energy via solar thermal reforming of natural gas is an attractive route to increase the energy content of methane, consequently reducing both natural gas consumption and greenhouse gases emission. The upgraded ²solar² fuel can be used for direct power generation in gas turbines or as a feedstock for chemical industry.