Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:

X-ray absorption spectroscopy (XAS) is a useful technique for studying electronic and structural properties of materials. When these measurements are performed in-situ, it is valuable to identify the reactive species and monitor the reaction kinetics. This could significantly improve our understanding of material property and advance the rational design of material with improved performance.

Model based multi-parametric optimization provides a complete map of solutions of an optimization problem as a function of, unknown but bounded, parameters in the model, in a computationally efficient manner, without exhaustively enumerating the entire parameter space. In a Model-based Predictive Control (MPC) framework, multi-parametric optimization can be used to obtain the governing control laws – the optimal control variables as an explicit function of the state variables.

Dr. Sameoto will provide an overview of several technologies developed by his lab. The techniques combine novel manufacturing processes to produce polymer-based products ranging from gecko-inspired adhesives to stretchable electronics and soft robotics. Combining different research disciplines, including micro- and nanofabrication, with larger scale 3D-printing technologies has opened up new opportunities for the manufacturing of new smart materials, bio-inspired surfaces and wearable electronics. Highlights include direction sensitive adhesives for pick-and-place assembly, mechanically reprogrammable soft robots, and multi-material FDM additive manufacturing processes that can print hard plastics, rubbers and stretchable metal wires in a single part.

Thursday, August 16, 2018 10:30 am - 10:30 am EDT (GMT -04:00)

Seminar | Coal-Based Solid Waste Resource Utilization Technology, by Professor Zhiping Du

The utilization of coal generates tons of solid waste, including fly ash and coal gangue, which occupies a huge amount of land and causes serious environmental problems, such as water and air pollution. In addition, the resource materials that remain in the solid waste, including Al, Si and Li, cannot be well utilized, which wastes resources. Our research focuses on the utilization of coal-based solid waste and a series of technologies that have been developed to undertake that work.

In the chemical process industry, the need to make decisions in a context of multiple and competing objectives is frequent. Thanks to advances in the field of operational research and systems science, several methods of multi-objective optimization have emerged that can be applied to chemical and biochemical engineering processes. These techniques incorporate the knowledge of an expert of a given process to the optimization routine, which provides valuable information about the domain of optimal solutions.

Thursday, November 1, 2018 2:00 am - 2:00 am EDT (GMT -04:00)

Seminar | Materials Bioeconomy and Solutions from the Forest, by Professor Orlando J. Rojas

Professor Rojas will introduce the vision of the future “Materials Bioeconomy” of Finland by way of the recently funded Aalto-VTT Flagship that is designed to catalyze fundamental research that will lead to scientific as well as economic impacts.

Dr. Higgins will address important aspects of CO2R catalyst development, including alloying and surface structure engineering approaches to tune activity and selectivity. He will discuss the remaining challenges facing artificial photosynthesis technology deployment, along with preliminary results for the integration of CO2R catalysts into practical device prototypes.

Prof Mekonnen will discuss chemical modification and structure-function of polysaccharides for material applications, as well as recent trends in enzyme polymerization platforms for polysaccharide production.