The exterior of the Institute for Quantum Computing building

Welcome to the Institute for Quantum Computing


Dr. Jonathan Baugh, a professor at the Institute for Quantum Computing (IQC) and the University of Waterloo’s Department of Chemistry, is working to create new, high-quality materials with desirable properties for future applications in quantum computing.

The inaugural networking conference brought together over 150 quantum professionals from government, industry and academic sectors to foster collaborations and create connections over two days. Quantum Connections attendees critically examined the challenges we face as a country within the landscape of quantum and had proactive conversations considering Canada’s quantum future.

Today, on May 12th, the Institute for Quantum Computing (IQC) is joining the world-wide mathematical community in celebrating women in mathematics. On this day of recognition, IQC is featuring some of the highly accomplished women in our community to share their experience, achievements, and advice for the next generation of women in math. 


Wednesday, May 31, 2023 12:00 pm - 1:00 pm EDT

IQC Student Seminar featuring Sainath Motlakunta

Preserving a Qubit During Adjacent Measurements at a Few Micrometers Distance  


Protecting a quantum object against irreversible accidental measurements from its surroundings is necessary for controlled quantum operations. This becomes especially challenging or unfeasible if one must simultaneously measure or reset a nearby object's quantum state, such as in quantum error correction. 

In atomic systems - among the most established quantum information processing platforms - current attempts to preserve qubits against resonant laser-driven adjacent measurements, waste valuable experimental resources such as coherence time or extra qubits and introduce additional errors. We preserve the quantum state of an 'asset' ion qubit with high fidelity, while a neighbouring qubit at a few microns distance is reset/measured. We achieve < 1 x 10-3 probability of accidental measurement of the asset qubit during a neighbouring qubit reset and < 4 x 10-3 while applying a detection beam on the same neighbour, for 11 μs, at a distance of 6 μm or 4 times the addressing Gaussian beam waist (permitted by the numerical aperture).

These low probabilities correspond to the preservation of the quantum state of the qubit with fidelities above 99.90% (state-reset) and 99.6% (state-measurement). Our results are enabled by precise wavefront control of the addressing optical beams, while utilizing a single ion as a quantum sensor of optical aberrations.

Our work demonstrates the feasibility of in-situ state-reset and measurement operations, building towards enhancements in the speed and capabilities of quantum processors such as in simulating measurement-driven quantum phases and realizing quantum error correction.

Math/CS Seminar - Atsuya Hasegawa (University of Tokyo)

Recently, Chia, Chung and Lai (JACM 2023) and Coudron and Menda (STOC 2020) have shown that there exists an oracle $\mathcal{O}$ such that $\mathsf{BQP}^\mathcal{O} \neq (\mathsf{BPP^{BQNC}})^\mathcal{O} \cup (\mathsf{BQNC^{BPP}})^\mathcal{O}$. In fact, Chia et al. proved a stronger statement: for any depth parameter $d$, there exists an oracle that separates quantum depth $d$ and $2d+1$, when polynomial-time classical computation is allowed.