Welcome to the Institute for Quantum Computing


En francais

The Institute for Quantum Computing (IQC) at the University of Waterloo is pleased to congratulate IQC Canada Inc., for receiving $18.4 M in funding from Innovation, Science and Economic Development Canada’s Strategic Science Fund (SSF). The fund aims to mobilize the expertise and resources of independent, third-party science and research organizations to enhance Canada’s science technology and innovation excellence.

En francais

Congratulations to Dr. Rajibul Islam, a faculty member at the Institute for Quantum Computing (IQC) and a professor in the Department of Physics and Astronomy, who has been awarded the 2024 Excellence in Science Teaching Award.

This annual award, selected by the University of Waterloo’s Faculty of Science, recognizes instructors who have demonstrated sustained, high-quality teaching in their undergraduate or graduate courses.


Wednesday, June 5, 2024 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Connor Kapahi

Designing a precision gravitational experiment and budgeting uncertainties

Quantum-Nano Centre, 200 University Ave West, Room QNC 1201 Waterloo, ON CA N2L 3G1

Neutrons have a long history at the forefront of precision metrology. Following in the footsteps of the first experiment that measured the effect of gravity on a quantum particle (the C.O.W. experiment), we aim to generate structured neutron momentum profiles and apply these states to measure the gravitational constant, big-G. The significant discrepancy between modern big-G experimental results underscores the need for new experiments whose systematic uncertainties can be decoupled from existing techniques. Previously, perfect-crystal neutron interferometers were used to measure local gravitational acceleration, little-g, unfortunately, the low neutron flux (a few neutrons per second) of these devices makes them impractical for precision measurements of big-G. The recently demonstrated Phase-Grating Moiré Interferometer (PGMI) offers an increase in neutron flux of several orders of magnitude while preserving the large interferometer area, and thus the sensitivity, of a perfect-crystal interferometer. This device possesses a set of systematic uncertainties that are independent from those in existing techniques that measure big-G. In this talk, I will discuss the feasibility of measuring big-G using a neutron PGMI apparatus with a test mass on the order of 1 tonne. Further, I will address how we can optimize this setup to maximize the phase shift from a 1-tonne mass and quantify the various sources of uncertainty in the proposed experiment.

Wednesday, July 10, 2024 11:45 am - 12:45 pm EDT (GMT -04:00)

Security implications of device imperfections in quantum key distribution

IQC Special Seminar, Jerome Wiesemann, Fraunhofer Heinrich Hertz Institute HHI

Quantum key distribution (QKD) is on the verge of becoming a robust security solution, backed by security proofs that closely model practical implementations.  As QKD matures, a crucial requirement for its widespread adoption is establishing standards for evaluating and certifying practical implementations, particularly against side-channel attacks resulting from device imperfections that can undermine security claims. Today, QKD is at a stage where the development of such standards is increasingly prioritized. This works aims to address some of the challenges associated with this task by focusing on the process of preparing an in-house QKD system for evaluation. We first present a consolidated and accessible baseline security proof for the one-decoy state BB84 protocol with finite-keys, expressed in a unified language. Building upon this security proof, we identify and tackle some of the most critical side-channel attacks by characterizing and implementing countermeasures both in the QKD system and within the security proof. In this process, we iteratively evaluate the risk of the individual attacks and re-assess the security of the system. Evaluating the security of QKD systems additionally involves performing attacks to potentially identify new loopholes. Thus, we also aim to perform the first real-time Trojan horse attack on a decoy state BB84 system, further highlighting the need for robust countermeasures. By providing a critical evaluation of our QKD system and incorporating robust countermeasures against side-channel attacks, our research contributes to advancing the practical implementation and evaluation of QKD as a trusted security solution.