Welcome to the Institute for Quantum Computing


En francais

Each year, the Institute for Quantum Computing (IQC) invites top undergraduate students from around the world to the University of Waterloo for the opportunity to immerse themselves in quantum information science and technology. This program, the Undergraduate School on Experimental Quantum Information Processing (USEQIP), provides participants with lectures on quantum information theory and experimental approaches to quantum devices, as well as over 30 hours of hands-on laboratory and experimental exploration.

En francais

A new collaboration between researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo, SNOLAB near Sudbury, Ontario, and Chalmers University of Technology in Sweden has been awarded a new grant to investigate the impact of radiation and cosmic rays on quantum technologies.


Tuesday, May 14, 2024 - Thursday, May 16, 2024 (all day)

ETSI/IQC Quantum Safe Cryptography Conference 2024

ETSI and the Institute for Quantum Computing are pleased to announce the 10th ETSI/IQC Quantum Safe Cryptography Conference, taking place in Singapore on May 14-16, 2024. The event will be hosted by the Centre for Quantum Technologies, National University of Singapore.

This event was designed for members of the business, government, and research communities with a stake in cryptographic standardization to facilitate the knowledge exchange and collaboration required to transition cyber infrastructures and business practices to make them safe in an era with quantum computers. It aims to showcase both the most recent developments from industry and government and cutting-edge potential solutions coming out of the most recent research.

Monday, May 27, 2024 2:30 pm - 3:30 pm EDT (GMT -04:00)

Semiconductor spin qubits for quantum networking

IQC Colloquium - Akira Oiwa, Osaka University

Quantum-Nano Centre, 200 University Ave West, Room QNC 1501 Waterloo, ON CA N2L 3G1

Semiconductor spin qubits are well recognized as a promising platform for scalable fault-tolerant quantum computers (FTQCs) because of relatively long spin coherence time in solid state devices and high-electrical tuneability of the quantum states [1]. In addition, semiconductors have a great potential for applications in quantum communications because of their abilities in optical devices. Therefore, especially in quantum repeater applications, the semiconductor spin qubits provide a route to efficiently connect qubit modules or quantum computers via optical fibers and construct global quantum networks, contributing to realize secure quantum communications and distributed quantum computing [2]. In this talk, we present the physical process enabling the quantum state conversion from single photon polarization states to single electron spin states in gate-defined quantum dots (QDs) and its experimental demonstration [3]. As recent significant achievements, we discuss that the enhancement of the conversion efficiency from a single photon to a single spin in a quantum dot using photonic nanostructures [4]. Finally, we present a perspective of high conversion efficiency quantum repeater operating directly at a telecom wavelength based on semiconductor spin qubits.

[1] G. Burkard et al., Rev. Mod. Phys. 95, 025003 (2023). [2] A. Oiwa et al., J. Phys. Soc. Jpn. 86, 011008 (2017); L. Gaudreau et al., Semicond. Sci. Technol. 32, 093001 (2017). [3] T. Fujita et al., Nature commun. 10, 2991 (2019); K. Kuroyama et al., Phys. Rev. B 10, 2991 (2019). [4] R. Fukai et al., Appl. Phys. Express 14, 125001 (2021); S. Ji et al., Jpn. J. Appl. Phys. 62, SC1018 (2023).