Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Tuesday, August 29, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Shayan Majidy

Critical Phase and Spin Sharpening in SU(2)-Symmetric Monitored Quantum Circuits

Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size.

Reference https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.054307

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

Wednesday, September 13, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Chung-You (Gilbert) Shih

Programmable Individual Optical Addressing for Trapped-ion Quantum Information Processors

Trapped ions are among the most advanced platforms for quantum computation and simulation. Programmable, arbitrary, and precise control—usually through laser-induced light-matter interaction—is required to tune ion-ion interactions. These interactions translate into diverse parameters of the system under study. Current technologies grapple with scalability issues in large ion chains and with "crosstalk" due to micron-level inter-ion separation.

In this talk, we present our development of two optical addressing systems optimized for non-coherent and coherent quantum controls, respectively.

The first addressing system employs a reprogrammable hologram to modulate the wavefront of the addressing beam, thereby engineering the amplitude and phase profile of light across the ion chain. Our implementation compensates for optical aberrations in the system down to λ/20 RMS and exhibits less than 10−4 intensity cross-talk error. This results in more than 99.9% fidelity when resetting the state or 99.66% when reading out the state of an individual ion without influencing adjacent ions. This scheme can be readily extended to over a hundred ions and adapted to other platforms, such as neutral atom arrays.

Additionally, we introduce another addressing design, tailored for coherent quantum operations through Raman transitions. This design uses a mirrored acoustic-optical deflector (AOD) setup to optimize optical power scaling and sidestep the undesired site-dependent frequency shift commonly observed in AOD-based setups.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

Thursday, September 14, 2023 1:00 pm - 2:00 pm EDT (GMT -04:00)

TC Fraser PhD Thesis Defence

An estimation theoretic approach to quantum realizability problems

This thesis seeks to develop a general method for solving so-called quantum realizability problems, which are questions of the following form under which conditions does there exists a quantum state exhibiting a given collection of properties? The approach adopted by this thesis is to utilize mathematical techniques previously developed for the related problem of property estimation which is concerned with learning or estimating the properties of an unknown quantum state. Our primary result is to recognize a correspondence between (i) property values which are realized by some quantum state, and (ii) property values which are occasionally produced as estimates of a generic quantum state. In Chapter 3, we review the concepts of stability and norm minimization from geometric invariant theory and non-commutative optimization theory for the purposes of characterizing the flow of a quantum state under the action of a reductive group.

In particular, we discover that most properties of quantum states are related to the gradient of this flow, also known as the moment map. Afterwards, Chapter 4 demonstrates how to estimate the value of the moment map of a quantum state by performing a covariant quantum measurement on a large number of identical copies of the quantum state. These measurement schemes for estimating the moment map of a quantum state arise naturally from the decomposition of a large tensor-power representation into its irreducible sub-representations.

Then, in Chapter 5, we prove an exact correspondence between the realizability of a moment map value on one hand and the asymptotic likelihood it is produced as an estimate on the other hand. In particular, by composing these estimation schemes, we derive necessary and sufficient conditions for the existence of a quantum state jointly realizing any finite collection of moment maps. Finally, in Chapter 6 we apply these techniques to the quantum marginals problem which aims to characterize precisely the relationships between the marginal density operators describing the various subsystems of composite quantum state. We make progress toward an analytic solution to the quantum marginals problem by deriving a complete hierarchy of necessary inequality constraints.

Friday, September 15, 2023 3:00 pm - 4:00 pm EDT (GMT -04:00)

One-Shot State Preparations using Local Operations and Limited Correlated Resources

IQC Seminar - Ian George, UIUC

As quantum networks approach real life implementation, a theoretical understanding of their limitations becomes practically important. In this talk, I will discuss recent works with my collaborators where we characterize the ability to prepare a target quantum state over simple networks using local operations (LO) and limited correlated resources in the one-shot setting.

Wednesday, September 20, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Shlok Ashok Nahar

Using Symmetries to Improve Quantum de Finetti Reductions

Quantum Nano Centre, 200 University Ave W, Room QNC 1201
Waterloo, ON, CA N2L 3G1

The analysis of quantum information processing protocols for generic states is challenging. In contrast, when the states are IID, i.e. the same in every round of the protocol, the analysis greatly simplifies. de Finetti reductions are important to reduce the analysis of quantum information processing tasks to the IID case, though this reduction has some cost associated with it. In this talk I will describe how IID-symmetries can be used to reduce the cost associated with the quantum de Finetti reductions.

Add event to calendar
Friday, September 22, 2023 9:00 am - 10:00 am EDT (GMT -04:00)

Stefanie Beale PhD Thesis Defence

Modeling and managing noise in quantum error correction 

Simulating a quantum system to full accuracy is very costly and often impossible as we do not know the exact dynamics of a given system. In particular, the dynamics of measurement noise are not well understood. For this reason, and especially in the context of quantum error correction, where we are studying a larger system with branching outcomes due to syndrome measurement, studies often assume a probabilistic Pauli (or Weyl) noise model on the system with probabilistically misreported outcomes for the measurements. In this thesis, we explore methods to decrease the computational complexity of simulating encoded memory channels by deriving conditions under which effective channels are equivalent up to logical operations. Leveraging this method allows for a significant reduction in computational complexity when simulating quantum error correcting codes. We then propose methods to enforce a model consistent with the typical assumptions of stochastic Pauli (or Weyl) noise with probabilistically misreported measurement outcomes. First, via a new protocol we call measurement randomized compiling, which enforces an average noise on measurements wherein measure- ment outcomes are probabilistically misreported. Then, by another new protocol we call logical randomized compiling, which enforces the same model on syndrome measurements and a probabilistic Pauli (or Weyl) noise model on all other operations (including idling). Together, these results enable more efficient simulation of quantum error correction systems by enforcing effective noise of a form which is easier to model and by reducing the simulation overhead further via symmetries. The enforced effective noise model is additionally consistent with standard error correction procedures and enables techniques founded upon the standard assumptions to be applied in any setting where our protocols are simultaneously applied. 

Monday, September 25, 2023 2:30 pm - 3:30 pm EDT (GMT -04:00)

Quantum Fine-Grained Complexity

Quantum Nano Centre (QNC) Room 0101, 200 University Avenue West, Waterloo, ON

IQC Colloquium, Harry Buhrman - QuSoft

One of the major challenges in computer science is to establish lower bounds on the resources, usually time, that are needed to solve computational problems. This holds in particular for computational problems that appear in practise. One way towards dealing with this situation is the study of fine- grained complexity where we use special reductions to prove time lower bounds for many diverse problems based on the conjectured hardness of some key problems.

Tuesday, September 26, 2023 2:30 pm - 3:30 pm EDT (GMT -04:00)

Global quantum networking for distributed technologies

Quantum Nano Centre (QNC) Room 1201, 200 University Avenue West, Waterloo, ON

IQC Seminar Featuring Jasminder Sidhu, University of Strathclyde, Glasgow

A network of quantum technologies will herald improvements to applications ranging from communications, sensing, and computing. Finite resources available in practical implementations and losses are two prominent limitations to the global scale-up of distributed quantum technologies. This can lead to a significant departure in the expected performance of these applications and limits their range. In this talk, I will highlight recent work that looks into the impact of finite resources to determine practical performances in satellite-based quantum communications. I will also introduce recent proposals that leverage space-based quantum repeaters to extend the range of quantum networks.

IQC Seminar - Stefanie Haeusler, Department of Optical Satellite Links, Institute of Communications and Navigation, Germany

Quantum Nano Centre, 200 University Ave W, Room QNC 1201 Waterloo, ON, CA N2L 3G1

Quantum Key Distribution (QKD) is a promising method to guarantee future-proof, information theoretic security. Since optical fibers have an exponential loss with distance, satellite-based QKD solutions are being developed in order to realize long-distance links. Therefore, Optical Ground Stations for QKD (QKD-OGS) need to be designed to enable quantum communication with satellites. Different link configurations will result in different integration options of the QKD-OGS in the terrestrial fiber network and therefore impact its performance. Applicable integration options are identified and discussed.

Monday, October 2, 2023 2:00 pm - 3:00 pm EDT (GMT -04:00)

Beyond the Pipeline: Fostering Equity in Our Quantum Future

Kim de Laat, University of Waterloo

Quantum Nano Centre (QNC) Room 0101, 200 University Avenue West, Waterloo, ON

The field of quantum computing has a unique opportunity to pre-empt many of the inequities that have riddled AI and computer science. But radical technologies require new, radical solutions. In this talk, I take issue with the leaky pipeline metaphor as a way of structuring policy interventions concerning inequality in STEM fields. I outline three reasons why overreliance on the leaky pipeline metaphor is problematic: (1) it does not accurately represent the phenomenon it is meant to describe; (2) it is incomplete; and (3) it does not capture the full heterogeneity of experiences with inequality in STEM disciplines. I conclude the talk by sharing feedback from the quantum technology community concerning potential pitfalls in the pursuit of equity in quantum, and what we can do about it.