Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, September 26, 2016 2:00 pm - 2:00 pm EDT (GMT -04:00)

Seminar: Joseph Choi

Superchiral Field, Phase Modulation, Optical Cloaking

Joseph Choi, University of Rochester

Quantum mechanical or classical interactions between light and matter can demonstrate interesting effects even in simplified models. I will present three such works. The first is a semi-classical theory that corrects the enhancement from a "superchiral" field, by including the magnetic susceptibility term which is usually ignored because of how small it is.

Monday, October 17, 2016 11:45 am - 11:45 am EDT (GMT -04:00)

Special seminar: Vincent Russo

Extended nonlocal games from quantum-classical

Vincent Russo, IQC

Several variants of nonlocal games have been considered in the study of quantum entanglement and nonlocality. In this talk, we shall consider two such variants called quantum-classical games and extended nonlocal games. The players, Alice and Bob, may play the game according to various classes of strategies. An entangled strategy is one in which Alice and Bob use quantum resources in the form of a shared quantum state and sets of measurements. One may ask whether the dimension of the shared state makes a difference in how well the players can perform using an entangled strategy.

Wednesday, October 19, 2016 6:30 pm - 6:30 pm EDT (GMT -04:00)

Beer + Science with Shohini Ghose

Come get your nerd on and learn about the world of physics with Nerd Nite KW! They will take you through quantum 101, and then see if you were paying attention with some friendly rounds of trivia. Aspiring scientists and experts alike are welcome. Special guest speaker Dr. Shohini Ghose, an Associate Professor of Physics and Computer Science and Director of the Centre for Women in Science at Wilfrid Laurier University in Canada, will also be giving a presentation. Make sure to also check out QUANTUM: The Exhibition while you're there.

Monday, October 24, 2016 11:45 am - 12:46 pm EDT (GMT -04:00)

Seminar: Vern Paulsen

Perfect embezzlement of entanglement

Van Dam and Hayden introduced the concept of approximate embezzlement of entanglement. Even if one allows infinite dimensional resource spaces but requires a bipartite tensor product structure of the resource space, perfect embezzlement is still impossible. But in the commuting operator framework perfect embezzlement is possible. We then introduce unitary correlation sets and relate these ideas to the conjectures of Connes and Tsirelson.

Monday, October 24, 2016 3:00 pm - 3:00 pm EDT (GMT -04:00)

Seminar: Christoph Marquardt

Practical continuous variable quantum communication in fibre and free space systems

Christoph Marquardt, Max Planck Institute for the Science of Light

I will review our recent activities in continuous variable QKD that aims for the deployment of QKD equipment compatible with current telecom standards and research in satellite QKD that will make it possible to bridge long distances. In optical fibre systems continuous variable quantum cryptography reaches GHz speed and offers efficient integration with known telecommunication techniques, especially in short inner-city or data center links. Sending and receiving components, including quantum random number generators, can be efficiently built in integrated components. Optical free space communication is a reliable means to transmit classical and quantum information. Free space links offer ad-hoc establishment in intra-city communication, air-to-ground or satellite-to-ground scenarios.

Tuesday, October 25, 2016 10:00 am - 10:00 am EDT (GMT -04:00)

Special Seminar: Greg Holloway

Metal-oxide-semiconductor (MOS) Si quantum dots

Greg Holloway, IQC

Electrostatically defined quantum dots provide a flexible implementation for scalable spin-based quantum information processing. Recently Si has emerged as a promising platform for these systems, due to its long electron spin coherence times, and its compatibility with numerous fabrication processes. In this talk I will give a detailed description of the device architecture, as well as a description of transport through Si quantum dots.