Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Wednesday, August 17, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Manoj R. Naick

Quantum Machine Learning Prediction Model for Retinal Conditions: Performance Analysis

Quantum machine learning predictive models are emerging and in this study we developed a classifier to infer the ophthalmic disease from OCT images. We used OCT images of the retina in  vision threatening conditions such as choroidal neovascularization (CNV) and diabetic macular edema (DME). PennyLane an open-source software tool based on the concept of quantum differentiable programming was used mainly to train the quantum circuits. The training was tested on an IBM 5 qubits System “ibmq_belem” and 32 qubits simulator “ibmq_qasm_simulator”. The results are promising. 

Thursday, August 18, 2022 2:00 pm - 3:00 pm EDT (GMT -04:00)

Tight bounds for Quantum Learning and Testing without Quantum Memory

Jerry Li - Microsoft Research

In this talk, we consider two fundamental tasks in quantum state estimation, namely, quantum tomography and quantum state certification. In the former, we are given n copies of an unknown mixed state rho, and the goal is to learn it to good accuracy in trace norm. In the latter, the goal is to distinguish if rho is equal to some specified state, or far from it. When we are allowed to perform arbitrary (possibly entangled) measurements on our copies, then the exact sample complexity of these problems is well-understood. However, arbitrary measurements are expensive, especially in terms of quantum memory, and impossible to perform on near-term devices. In light of this, a recent line of work has focused on understanding the complexity of these problems when the learner is restricted to making incoherent (aka single-copy) measurements, which can be performed much more efficiently, and crucially, capture the set of measurements that can be be performed without quantum memory. However, characterizing the copy complexity of such algorithms has proven to be a challenging task, and closing this gap has been posed as an open question in various previous papers.

Wednesday, August 24, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Sarah Li

Dynamic qubit allocation and routing for constrained topologies by CNOT circuit re-synthesis

Recent strides in quantum computing have made it possible to execute quantum algorithms on real quantum hardware. When mapping a quantum circuit to the physical layer, one has to consider the numerous constraints imposed by the underlying hardware architecture. Many quantum computers have constraints regarding which two-qubit operations are locally allowed. For example, in a superconducting quantum computer, connectivity of the physical qubits restricts multi-qubit operations to adjacent qubits [1]. These restrictions are known as connectivity constraints and can be represented by a connected graph (a.k.a. topology), where each vertex represents a distinct physical qubit. When two qubits are adjacent, there is an edge between the corresponding vertices.

Thursday, August 25, 2022 2:00 pm - 3:00 pm EDT (GMT -04:00)

Publicly Verifiable Quantum Money from Random Lattices

Andrey Boris Khesin - Massachusetts Institute of Technology

Publicly verifiable quantum money is a protocol for the preparation of quantum states that can be efficiently verified by any party for authenticity but is computationally infeasible to counterfeit. We develop a cryptographic scheme for publicly verifiable quantum money based on Gaussian superpositions over random lattices. We introduce a verification-of-authenticity procedure based on the lattice discrete Fourier transform, and subsequently prove the unforgeability of our quantum money under the hardness of the short vector problem from lattice-based cryptography.

Friday, August 26, 2022 10:00 am - 11:00 am EDT (GMT -04:00)

Towards scalable yet high-fidelity quantum processors

Felix Motzoi - University of California

In the NISQ era of quantum computing, as system sizes are progressively increasing, there are major concerns about the degradation of performance with increasing complexity. These can largely be reduced to the problems of crosstalk and correlations between system components, of fabrication uncertainties and drift in system parameters, and of multi-parameter optimization across multi-qubit state spaces in a fixed uptime duty cycle. In this presentation, we address inroads towards a more comprehensive, scalable approach for control theoretic solutions to maintaining (given architecture) performance that encompasses: a method to incorporate arbitrary couplings into an effective Hamiltonian frame with superexponential speedup compared to standard perturbative approaches [B. Li, T. Calarco, F. Motzoi, PRX Quantum 3, 030313 (2022)]; a control theoretic approach to tracking uncertainties in quantum circuits giving tight error bounds [M. Dalgaard, C. Weidner, F, Motzoi - Phys. Rev. Lett. 128, 150503 (2022)]; and a machine learning framework for symbolic optimization given particular Hamiltonian and associated uncertainties with a single meta-optimization permitting simultaneous tuneup of all qubits within the architecture belonging to the same class of Hamiltonians [F. Preti, T. Calarco, F. Motzoi, arXiv:2203.13594 (2022)].

Wednesday, September 7, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Joan Arrow

Assessing the Trainability of the Variational Quantum State Diagonalization Algorithm at Scale

Developing new quantum algorithms is a famously hard problem. The lack of intuition concerning the quantum realm makes constructing quantum algorithms that solve particular problems of interest difficult. In addition, modern hardware limitations place strong restrictions on the types of algorithms which can be implemented in noisy circuits. These challenges have produced several solutions to the problem of quantum algorithm development in the modern Near-term Intermediate Scale Quantum (NISQ) Era. One of the most prominent of these is the use of classical machine learning to discover novel quantum algorithms by minimizing a cost function associated with the particular application of interest. This quantum-classical hybrid approach, also called Variational Quantum Algorithms (VQAs), has attracted major interest from both academic and industrial researchers due to its flexible framework and expanding list of applications - most notably optimization (QAOA) and chemistry (VQE). What is still unclear is whether these algorithms will deliver on their promise when implemented at a useful scale, in fact there is strong reason to worry whether the classical machine learning model will be able to train in the larger parameter space. This phenomenon is commonly referred to as the Barren Plateaus problem, which occurs when the training gradient vanishes exponentially quickly as the system size increases. Recent results have shown that some cost functions used in training can be proven to result in a barren plateau, while other cost functions can be proven to avoid them. In this presentation, I apply these results to my 2018 paper where my group developed a new Variational Quantum State Diagonalization (VQSD) algorithm and so demonstrate that this algorithm's current cost function will encounter a Barren Plateau at scale. I then introduce a simple modification to this cost function which preserves its function while ensuring trainability at scale. I also discuss the next steps for this project where I am teaching a team of 6 quantum novices across 4 continents the core calculation I use in this work to expand my analysis to the entire literature of VQAs.

Reference: https://uwspace.uwaterloo.ca/handle/10012/18187

Tuesday, September 13, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

Quantum Perspectives: Computing

Quantum computing promises to dramatically alter how we solve many computational problems by controlling information encoded in quantum bits. With potential applications in optimization, materials science, chemistry, and more, building functional quantum computers is one of the most exciting challenges in research today. To build and use these devices, we need to precisely control quantum bits in the lab, understand the ability and limitations of quantum algorithms, and find new methods to correct for decoherence and other quantum errors.

Research in quantum computing is highly multidisciplinary, with important contributions being made from computer scientists, mathematicians, physicists, chemists, engineers, and more. In this panel, we’ll learn from three researchers at the forefront of the field studying experimental quantum devices, quantum algorithms, and quantum error correction:

  • Crystal Senko, Assistant Professor, Institute for Quantum Computing and the Department of Physics
  • Shalev Ben-David, Assistant Professor, Institute for Quantum Computing and Cheriton School of Computer Science
  • Michael Vasmer, Postdoctoral Researcher, Institute for Quantum Computing and Perimeter Institute for Theoretical Physics

Quantum Perspectives: A Panel Series celebrates 20 years of quantum at IQC. Over the past two decades, IQC’s leading quantum research has powered the development of transformative technologies, from ideas to commercialization, through research in theory, experiment and quantum applications. This year, we’re celebrating IQC’s 20th anniversary with a panel series exploring all perspectives of quantum, including sensing, materials, communication, simulation and computing.

Add event to calendar

Apple   Google   Office 365   Outlook   Outlook.com   Yahoo

Wednesday, September 14, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Mohammad Ayyash

Effective JC and anti-JC Interactions via Strong Driving 

The Jaynes-Cummings Model (JCM) approximates the Quantum Rabi Model (QRM) in some regimes and is exactly solvable by only keeping the rotating or `energy-conserving’ terms and dropping the counter-rotating or `non-energy conserving’ terms.

Since the proposal of the JCM, questions on the effect and presence of counter-rotating terms popped up.

Using strong driving, one can induce the effects of the counter-rotating terms on a comparable timescale to the rotating terms. In such a scenario, one can create a Schrödinger cat state in a resonant manner without the need for any type of Kerr nonlinearity.

In this talk, we review the QRM and its descendant, the JCM. Then, we discuss the realization of a Schrödinger cat state, its challenges in practice and how to solve them.

Friday, September 16, 2022 12:00 pm - 2:00 pm EDT (GMT -04:00)

IQC-GSA BBQ at RAC

On behalf of the IQC-GSA, we invite you to the IQC RAC BBQ. We hope to see everyone on Friday, September 16th. Please bring your friends, advisors, group members, and batchmates! We are especially happy to welcome new members of IQC and we hope everyone will take this opportunity to interact with other IQC members and visit RAC.

Monday, September 19, 2022 1:30 pm - 3:30 pm EDT (GMT -04:00)

Quantum For Health Design Challenge Launch Event

TQT’s Quantum For Health (Q4Health), is open to all at the University of Waterloo, seeking opportunities where quantum can advance health.

On September 19, TQT will host a Q4Health Launch Event in the Mike and Ophelia Lazaridis Quantum-Nano Centre Rm 0101. This event will include descriptions of quantum for health case studies. Following the talks, there will be a meet and greet to assist in team building. Attendees will receive information updates and an opportunity to register and learn more about upcoming Lunch and Learn sessions.

Register by September 16 (for refreshment planning purposes). There will be limited onsite registration at the event.