Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Monday, January 23, 2023 4:00 pm - 5:00 pm EST (GMT -05:00)

Blueprint for creating massive and large spatial quantum superposition in a lab

IQC Colloquium Featuring Anupam Mazumdar, University of Groningen

We are led to create a massive and large spatial quantum superposition to probe the quantum nature of gravity in a laboratory. In particular, to witness the quantum entanglement mediated via the quantum nature of gravity, we will need to prepare a pure quantum state of mass 10^{-15} -10^{-14}Kg with a spatial quantum superposition of 10-100 microns and a coherence time of nearly 1-2 seconds. ...

Thursday, January 26, 2023 3:00 pm - 4:00 pm EST (GMT -05:00)

Quantum majority vote

MATH CS Seminar Featuring Maris Ozols, ASSISTANT PROFESSOR UNIVERSITY OF AMSTERDAM QuSoft

Majority vote is a basic method for amplifying correct outcomes that is widely used in computer science and beyond. While it can amplify the correctness of a quantum device with classical output, the analogous procedure for quantum output is not known. We introduce quantum majority vote as the following task: given a product state ∣ψ_1⟩⊗⋯⊗∣ψ_n⟩ where each qubit ∣ψ_i⟩ is in one of two orthogonal states ∣ψ⟩ or ∣ψ^⊥⟩, output the majority state. We show that an optimal algorithm for this problem achieves worst-case fidelity of 1/2 + Θ(1/n). Under the promise that at least 2/3 of the input qubits are in the majority state, the fidelity increases to 1 − Θ(1/n) and approaches 1 as n increases. ...

Wednesday, February 1, 2023 11:00 am - 12:00 pm EST (GMT -05:00)

Quantum Matters Seminar Series: Alpha-RuCl3: a progress report

Young-June Kim: Alpha-RuCl3: a progress report

Abstract: A bond-dependent anisotropic magnetic interaction called the Kitaev interaction can be found in honeycomb lattice materials with strong spin-orbit coupling, which has made a profound impact on quantum magnetism research. In particular, alpha-RuCl3 has been heralded as a realization of the Kitaev quantum spin liquid state, an elusive new state of matter that harbours Majorana fermions. In this talk, I will give a brief overview of the current status of research on alpha-RuCl3 and discuss recent experimental developments and a few surprising findings using ultra-high-quality samples grown in our laboratory. Our samples have minimal stacking faults even at low temperatures, allowing us to determine the low-temperature crystal structure unambiguously. We also found that the magnetic properties are surprisingly sensitive to the inter-layer configuration, giving rise to various magnetic transition temperatures. We also compare low-energy spin-orbit excitations in various Kitaev materials using resonant inelastic x-ray scattering (RIXS). We found that non-local physics is important for describing the spin-orbit excitations in these materials, in contrast to the conventional belief that local Jeff=1/2 physics is sufficient in these compounds.

Friday, February 3, 2023 12:00 pm - 1:00 pm EST (GMT -05:00)

Quantum Today: Metamaterials for Broadband Light Absorption

Join us for Quantum Today, where we sit down with researchers from the University of Waterloo’s Institute for Quantum Computing (IQC) to talk about their work, its impact and where their research may lead.

Monday, February 27, 2023 2:30 pm - 3:30 pm EST (GMT -05:00)

Spin Qubits in Semiconductors: Current Status and Future Directions

IQC Colloquium featuring Xuedong Hu Department of Physics, University at Buffalo, SUNY

Research on the physical implementation of quantum computing has made dramatic progress over the past decade, spearheaded by superconducting qubits and trapped ion qubits, to the degree that small-scale quantum information processors are now within reach. Studies of semiconductor spin qubits, which have often been considered one of the most promising in the long term from the perspective of scalability, have also yielded some important results in the past decade, demonstrating exceptional coherence properties for single spins confined in quantum dots and donors and high-fidelity single-qubit gates. ...

Yong-Baek Kim: Quantum Spin Liquids and Criticality in Multipolar Materials

Abstract: Multipolar quantum materials possess local moments carrying higher-rank quadrupolar or octupolar moments. These higher-rank multipolar moments arise due to strong spin-orbit coupling and local symmetry of the crystal-electric-field environment. In magnetic insulators, the interaction between multipolar local moments on frustrated lattices may promote novel quantum spin liquids. In heavy fermion systems, the interaction between multipolar local moments and conduction electrons may lead to unusual non-Fermi liquids and quantum criticality. In this talk, we first discuss a novel quantum spin ice state, a three-dimensional quantum spin liquid with emergent gauge field, that may have been realized in Ce2Zr2O7 and Ce2Sn2O7, where Ce3+ ions carry dipolar-octupolar moments. We present a theoretical analysis of possible quantum spin ice states in this system and compare the theoretical results of dynamical spin structure factors with recent neutron scattering experiments. Next, we present a theoretical model to describe the unusual Kondo effect and quantum criticality in Ce3Pd20Si6, where Ce3+ moments carry a plethora of dipolar, quadrupolar, and octupolar moments. We show that two consecutive Kondo-destruction-type phase transitions can occur with the corresponding Fermi surface reconstructions. We compare these results with existing experiments and suggest future ultrasound experiments for the detection of emergent quantum critical behaviors.

Wednesday, March 15, 2023 11:00 am - 12:00 pm EDT (GMT -04:00)

Quantum Matters Seminar Series: Language Models for Quantum Simulation

Roger Melko: Language models for quantum simulation

Abstract: As the frontiers of artificial intelligence advance more rapidly than ever before, generative language models like ChatGPT are poised to unleash vast economic and social transformation. In addition to their remarkable performance on typical language tasks (such as writing undergraduate research papers), language models are being rapidly adopted as powerful ansatze states for quantum many-body systems.  In this talk, I will discuss the use of language models for learning quantum states realized in experimental Rydberg atom arrays. By combining variational optimization with data-driven learning using qubit projective measurements, I will show how language models are poised to become one of the most powerful computational tools in our arsenal for the design and characterization of quantum simulators and computers.

Wednesday, March 22, 2023 2:00 pm - 3:00 pm EDT (GMT -04:00)

Space-Based Quantum Networking at JPL

IQC Special Seminar Featuring Makan Mohageg, NASA's Jet Propulsion Laboratory

JPL has been at the forefront of space-based quantum technologies. Cold Atom Lab is the first orbital experiment exploring the dynamics of Bose-Einstein condensates in micro-gravity. Deep Space Atomic Clock demonstrated that a trapped-Hg+ clock in space provides timing precision and accuracy required for improved spacecraft autonomous navigation.

Monday, March 27, 2023 10:00 am - 11:30 am EDT (GMT -04:00)

Error correction in quantum computers and beyond

IQC Special Seminar Aleksander Kubica, Amazon Web Services Center for Quantum Computing

Quantum computers introduce a radically new paradigm of information processing and revolutionize our thinking about the world. However, designing and building quantum computers that operate properly even when some of their components malfunction and cause errors is a heroic endeavor.