Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:

Konstantinos Lagoudakis,  Stanford University

Light matter interactions lie in the heart of several phenomena of fundamental and applied interest. Both condensation of exciton polaritons in semiconductor microcavities as well as quantum information processing with charged quantum dots in micro-resonators rely on strong light matter interactions.

Monday, March 9, 2015 2:30 pm - 3:30 pm EDT (GMT -04:00)

Andrew Briggs: The Oxford Questions – and some answers

Andrew Briggs, Oxford

At a conference in Oxford in 2010 a set of questions was formulated with a view to establishing an agenda for subsequent research in quantum reality. Some of these questions are open to experimental investigation. We have since performed tests of the Leggett-Garg inequality in two and in three level systems, in each case violating the condition for macrorealism. We are now addressing another of the questions in single molecule devices using nanofabricated gaps in graphene.

Tuesday, March 10, 2015 7:00 pm - 7:00 pm EDT (GMT -04:00)

Cybersecurity in a quantum world - will we be ready?

Public lecture by Michele Mosca

Emerging quantum technologies will change the way that our online information is stored and secured. To be cyber-safe we must be quantum-safe. It’s possible, but we need to start planning now if we want to be ready in time.

Monday, March 16, 2015 11:00 am - 12:00 pm EDT (GMT -04:00)

Na Young Kim: Carbon Nanotube Transport and Exciton-Polariton Condensation

Na Young Kim, Stanford University

We in modern society are beneficiaries of advanced electronics, photonics and the combination of two. As an effort to develop new platforms of electronics, photonics and optoelectronics harnessing quantum nature, I have studied transport properties of carbon nanotubes, where long-range interaction plays a significant role. In photonics domain, I have been studying exciton-polaritons in a quantum-well-microcavity structure, where dynamical macroscopic condensation emerge via stimulated scattering process arising from exchange interactions.

Ben Baragiola, University of New Mexico

Traveling wave packets of light prepared with a definite number of photons, known as multimode Fock states, are well-suited for the role of "flying qubits" to relay information in a quantum computing device. In both the optical and microwave domain, propagating single-photon fields are routinely produced and manipulated, with ongoing progress toward higher photon numbers.

Monday, April 20, 2015 2:30 pm - 3:30 pm EDT (GMT -04:00)

Jerry Chow: Taking Superconducting Qubits to the Next Generation

Jerry Chow, IBM T.J. Watson Research Center, USA

Fault tolerant quantum computing is possible by employing quantum error correction techniques. In this talk I will describe an implementation of a true quantum code using 4 lithographically defined superconducting qubits in a square lattice capable of measuring both types of possible quantum errors occurring on a single qubit. The experiment requires highly coherent qubits, high quality quantum operations implementing the detecting circuit, and a high quality independent qubit measurement set-up.

Thursday, April 30, 2015 11:00 am - 12:00 pm EDT (GMT -04:00)

Matthieu Nannini: Nanolithography using Thermal Probe AFM: principle and applications

Matthieu Nannini, McGill University

While IBM Zurich's millipede project of data storage did not
have the success anticipated it would, a new technology for nano
lithography was born. Since 2009, IBM Zurich has been refining their

Thursday, April 30, 2015 4:00 pm - 5:00 pm EDT (GMT -04:00)

Quantum Frontiers Distinguished Lecture: Sajeev John

Sajeev John, University of Toronto

Photonic band gap materials: semiconductors of light

Join us for the next Quantum Frontiers Distinguished Lecture Series when Dr. Sajeev John will talk about light-trapping crystals.

Friday, May 1, 2015 12:00 pm - 1:00 pm EDT (GMT -04:00)

Tim J. Bartley: Mesoscopic quantum optics

Tim J. Bartley, National Institute of Standards and Technology, Boulder

Fundamental to quantum optics is the study of the distribution of photons in modes of an electromagnetic field. Until now, direct photon number measurements on nonclassical states occupying a single mode have been limited to the few-photon regime (typically no more than 5). I will present results from direct measurements of nonclassical states containing up to 50 (fifty) photons, at telecom wavelengths and with total raw efficiencies well above 60%.