Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:

CHEMICAL ENGINEERING BEST PUBLICATION PRIZE (2013) SEMINAR

“Irreversible Adsorption-Driven Assembly of Nanoparticles at Fluid Interfaces Revealed by a Dynamic Surface Tension Probe” by Navid Bizmark, Marios A. Ioannidis, Dale E. Henneke, Langmuir, Vol. 30, pages 710-717

For:  “A Balanced Theoretical-Practical paper, with a Significant Contribution for the Quantitative Description of Nanoparticle Adsorption at Fluid Interfaces”

Friday, November 7, 2014 9:00 am - 4:30 pm EST (GMT -05:00)

Eastern Canada Student Energy Conference

The UW Society of Petroleum Engineers (SPE) Chapter invites you: 

Event:  The Eastern Canada Student Energy Conference

(hosted by University of Waterloo, University of Toronto and Society of Petroleum Engineering Student Chapters 

Date:   Friday, November 7th, 2014

Time:  9:00 am to 4:30 pm

Location:  The Delta Waterloo Hotel, 110 Erb St. W., Waterloo, ON

Register: http://www.ecsec.ca/

ABSTRACT:  Polymers and other materials that are used in contact with biological fluids such as blood are prone to protein adsorption and cell interactions. A protein layer quickly forms at the surface of the material and can influence the subsequent adhesion of platelets, leukocytes, other cells and microbes. For medical devices this can lead to numerous complications including coagulation, thrombosis (blood clotting) and infection, among others.

ABSTRACT:  Mid-December 2014 is set to be the historical launch of the first commercial fuel-cell vehicle, heralding a transition from fossil-fueled vehicles to cleaner hydrogen-fed vehicles. Despite this significant milestone in making, there is an aggressive approach for further reduction in the cost of the polymer electrolyte fuel cell (PEFC) stacks while maintaining/ improving its electrochemical performance.

ABSTRACT:  Stimuli-responsive degradation (SRD) or cleavage of dynamic covalent bonds in response to external stimuli is a promising property in the development of polymer-based multifunctional nanomaterials. These nanomaterials are designed to degrade upon the cleavage of dynamic linkages in response to single or multi-stimuli, thus tuning lower critical solution temperature, controlling nanoparticle morphologies, fabricating highly-ordered nanopores, and enhancing controlled drug release.

ABSTRACT:  In order to solve the energy crisis, we need high-impact technology solutions which allow us to make and use energy products in a way that provides a similar standard of living but with a much-reduced environmental footprint. It's not easy.  Any new approaches will have to not only be proven to be less damaging to the environment, but they must be politically and socially acceptable, and they must still be profitable enough such that the industry actually wants to try them.

ABSTRACT:  The exogenous delivery of RNA into tissues has shown great potential for the treatment of destructive diseases by therapeutically controlling the expression of genes within those tissues.  A key need for the broad application of RNA for therapeutic biomedical engineering applications is the development of safe and effective delivery systems capable of targeting specific cells within the body.

ABSTRACT:  Polymer nanocomposites have unique multifunctional properties resulting from the size and shape of the fillers and display superior electrical, thermal and mechanical properties to conventional polymer composites due to the nanoscale size of the filler.  Multiwall carbon nanotubes (MWCNT) as well as Copper and Silver nanowires were melt-mixed with polymers via solution mixing and in miniature mixers, and electrical and mechanical properties were tested.