Notice of PhD Oral Defence - "Development of a Topical Ocular Drug Delivery System Using Polymeric Nanoparticles" by Shengyan Liu
PLEASE NOTE THAT THIS PHD DEFENCE IS RESTRICTED
PLEASE NOTE THAT THIS PHD DEFENCE IS RESTRICTED
ABSTRACT: In order to reduce carbon emissions and construct sustainable society, it is very important to construct sustainable biorefineries, which produce biofuel/biochemical from biomass. Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a single process, is a promising strategy for effective bioproduction.
ABSTRACT: This presentation will provide an overview of recent progress and remaining technical challenges of PEM fuel cells. The important contribution of catalyst materials and catalyst layer towards wide-spread commercialization of fuel cells will be highlighted. The advantage and possible limitations of various types of catalysts, such as Pt alloys (de-alloys), core-shell catalysts and shape-controlled nanocrystal catalysts will be assessed.
ABSTRACT: The Singapore University of Technology and Design facilitated an ambitious large-scale science experiment in September and November 2015 which saw over 43,000 students carrying sensors designed to measure temperature, humidity, pressure, light, noise, IR temperature, motion, among other physical parameters in a project supported by the National Research Foundation and carried out with partners from the Ministry of Education and the Singapore Science Center. Prof. Erik Wilhelm, Prof.
ABSTRACT: The bottom–up approach is considered a potential alternative for low cost manufacturing of nanostructured materials [1]. It is based on the concept of self–assembly of nanostructures on a substrate, and is emerging as an alternative paradigm for traditional top down fabrication used in the semiconductor industry. We demonstrate various strategies to control nanostructure assembly (both organic and inorganic) at the nanoscale.
ABSTRACT: The regulation of intracellular water activity is a necessary characteristic of many physiological functions in all living organisms. The high water transport rate across cell membranes is due to a type of water channel protein, aquaporin. The unique selectivity, high water transport capability, and low activation energy of aquaporins have garnered strong scientific interests with many studies concentrating on the fabrication of biomimetic membranes based on the reconstitution of aquaporins into self-assembled amphiphilic lipid or polymer bilayers.