Current graduate students

Wednesday, February 1, 2017 11:45 am - 11:45 am EST (GMT -05:00)

Seminar: Mathieu Lauriere

Extended Learning Graphs for Triangle Finding

Mathieu Lauriere, New York University, Shanghai

In this talk we present new quantum algorithms for Triangle Finding improving its best previously known quantum query complexities for both dense and spare instances. For dense graphs on n vertices, we get a query complexity of O(n^{5/4}) without any of the extra logarithmic factors present in the previous algorithm of Le Gall [FOCS’14]. For sparse graphs we also improve some of the results obtained by Le Gall and Nakajima [ISAAC’15].

Friday, February 3, 2017 2:00 pm - 2:00 pm EST (GMT -05:00)

Seminar: Justin Bohnet

Entanglement in a synthetic quantum magnet made of hundreds of trapped ions

Justin Bohnet, National Institute of Standards and Technology, Boulder

Entanglement between individual quantum objects exponentially increases the complexity of quantum many-body systems, such that models with more than 40 quantum bits cannot be fully studied using conventional techniques on classical computers. To make progress at this frontier of physics, Feynman’s pioneering ideas of quantum computation and quantum simulation are now being pursued in a wide variety of well-controlled platforms.

Friday, February 3, 2017 10:30 am - 10:30 am EST (GMT -05:00)

Seminar: Peter Geltenbort

Research with very cold and ultra-cold neutrons at the Institute Laue Langevin in Grenoble

Peter Geltenbort, Institute Laue Langevin, Grenoble

Due to their outstanding property to be storable and hence observable for long periods of time (several hundreds of seconds) in suitable material or magnetic traps, ultra-cold neutrons (UCN) with energies around 100 neV are an unique tool to study fundamental properties of the free neutron, like its beta-decay lifetime, its electric dipole moment and its wave properties.

Tuesday, January 24, 2017 3:00 pm - 3:00 pm EST (GMT -05:00)

Seminar: Milena Grifoni

Informal conversation with Dr. Milena Grifoni, University of Regensburg

​Presented by: Fem Phys and Women in Science

​Join Fem Phys and Women in Science for an informal conversation with Dr. Milena Grifoni about her career in physics. Dr. Grifoni researches quantum transport in nanoscale systems and quantum dissipation at the University of Regensburg in Germany. Coffee and cookies will be provided. All are welcome. 

Friday, January 27, 2017 11:45 pm - 11:45 pm EST (GMT -05:00)

RAC1 Journal Club/Seminar Series: Chris Pugh

Airborne demonstration of a QKD payload receiver

Chris Pugh, IQC

We demonstrate the viability of components of a quantum receiver satellite payload by successfully performing quantum key distribution in an uplink configuration to an airplane. Each component has a clear path to flight for future satellite integration.

Thursday, February 23, 2017 7:00 pm - 7:00 pm EST (GMT -05:00)

Quantum Shorts and Quantum Applications

Short film festival + public lecture by Martin Laforest

Join us for a night of film and science. The Institute for Quantum Computing has partnered with the Centre for Quantum Technologies in Singapore to host a festival for quantum-inspired films. The screening of the top 10 short films will be followed by a lecture by Senior Manager, Scientific Outreach, Martin Laforest about the applications of quantum devices. He will delve into what we know quantum devices will be used for (that will affect everyone) and where researchers are hoping they will be used in the future.

Monday, January 23, 2017 2:30 pm - 2:30 pm EST (GMT -05:00)

Colloquium: Milena Grifoni

Probing light-matter entanglement in the non-perturbative regime of a strongly driven spin-boson system

Milena Grifoni, University of Regensburg

The spin-boson model is an archetype model to study the impact of a thermal reservoir on the coherent dynamics of a two-level quantum particle. When the coupling between qubit and environment crosses a threshold, a transition from coherent to incoherent tunneling between the two qubit eigenstates occurs. At even larger coupling, the dynamics is fully quenched, signaling a strong entanglement of the qubit with the reservoir’s continuum.

Wednesday, January 25, 2017 2:00 pm - 2:00 pm EST (GMT -05:00)

Seminar: Christine Muschik

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

Christine Muschik, University of Innsbruck

Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. In the spirit of Feynman's vision of a quantum simulator, this has recently stimulated theoretical effort to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented.