PhD Defence
Engineering Effective Hamiltonians for Magnetic Resonance
Holger Haas
Holger Haas
Nonlocality is a useful quantum resource in applications such as quantum key distribution and quantum random number generation. We study nonlocality in a multi-qubit model—quantum kicked top (QKT). This system is of particular interest because it displays regular behavior, bifurcations and chaotic behavior in the classical limit, and is one of the few chaotic systems that has been experimentally realized.
Join us for this week's IQC Student Seminar, featuring surprise speakers and a pizza lunch.

The future is quantum, and it needs to be “perfect” if we are going to trust our security and data with it.
In a non-local game, two or more non-communicating, but entangled, players cooperatively try to win a game consisting of a one-round interaction with a classical referee. In this talk, I will describe a two-player non-local game with the property that an epsilon-close to optimal strategy requires the players to share an entangled state of dimension 2^{1/poly(epsilon)}.
PhD Candidate: Hemant Katiyar
Quantum information is very fragile, but clever quantum engineers aspire to use error correction to keep information intact. Topologically ordered phases—wherein the most exotic properties of quantum physics such as entanglement are protected within a strongly-interacting material—are currently being commandeered as quantum error-correcting codes for today’s quantum architectures. I’ll introduce these as well as a new generation of theoretical materials that promise to self-correct themselves.
Huichen Sun
Electromagnetically induced transparency and Autler-Townes splitting in superconducting quantum circuits
Josh Ruebeck
ψ-epistemic interpretations of quantum theory have a measurement problem
Last time we looked at unitary correlation sets, and obtained an analogue of Tsirelson's problem that is equivalent to the original one. In this talk, we'll see how unitary correlations can be thought of as strategies for a certain class of two-player (extended) non-local games, called quantum XOR games. Moreover, we'll see that Connes' embedding problem is equivalent to determining whether every quantum XOR game has the same winning probability in the commuting model as in the approximate finite-dimensional model.
The University of Sydney
Talk given by visitor Virginia Frey
Abstract