Future undergraduate students

Tuesday, October 14, 2014 11:00 am - 12:00 pm EDT (GMT -04:00)

Nathan Wiebe: Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits

Nathan Wiebe, Microsoft Research

We develop a method for approximate synthesis of single--qubit rotations of the form e^{-i f(\phi_1,\ldots,\phi_k)X} that is based on the Repeat-Until-Success (RUS) framework for quantum circuit synthesis. We demonstrate how smooth computable functions, f, can be synthesized from two basic primitives. This synthesis approach constitutes a manifestly quantum form of arithmetic that differs greatly from the approaches commonly used in quantum algorithms.

Monday, October 6, 2014 2:30 pm - 3:30 pm EDT (GMT -04:00)

Val Zwiller: Nanowire quantum dots for quantum optics

Val Zwiller, Delft University of Technology, Netherlands

Nanowires offer exciting opportunities in quantum optics. Using quantum dots in semiconducting nanowires, we demonstrate the generation of single photons as well as pairs of entangled photons. Making electrical contacts to semiconducting nanowires, we make a single quantum dot LED where electroluminescence from a single quantum dot can be studied. Similar devices operated as photodiodes enable the operation of single nanowire avalanche photodiodes.

Tuesday, September 30, 2014 2:30 pm - 3:30 pm EDT (GMT -04:00)

Yury Kurochkin: Quantum optics experiments in Russian Quantum Center

Yury Kurochkin, Russian Quantum Center in Skolkovo, Moscow

In this talk I want to present progress of our quantum optics laboratory. Our laboratory was built in the summer 2013. During the past year we've performed number of beautiful experiments. One of the featured experiments is "Quantum vampire" which demonstrates non-local properties of the annihilation operator. This beautiful effect predicts that if you take particular number of photons from the part of the light beam there will be now shadow.

Tuesday, September 23, 2014 12:00 pm - 1:00 pm EDT (GMT -04:00)

Vern Paulsen: Quantum chromatic numbers

Vern Paulsen, University of Houston

The chromatic number of a graph has a description as the classical value of a three-person game. If instead one plays a quantum version of this game, then this yields a smaller value--the quantum chromatic number of the graph. However, using the Algebraic Quantum Field Theory (AQFT) model could yield a larger set of quantum correlations, and a different value for the quantum chromatic number.

Monday, September 8, 2014 2:30 pm - 3:30 pm EDT (GMT -04:00)

Joonyeon Chang: Spin controlled electronic devices for the next generation electronics

Joonyeon Chang, Korea Institute for Science and Technology

The conventional electronic devices such as personal computer and mobile phones are primarily based on the control of electron charge in semiconductors. Although the tremendous progress in micro-fabrication technologies has accelerated the miniaturization of electronic devices, the size of devices will soon encounter the fundamental physical limits of that miniaturization. Further scale reduction beyond these limits will require a radical alteration of the concept of functional devices.

Thursday, September 4, 2014 2:00 pm - 3:00 pm EDT (GMT -04:00)

Chang Liu: Generation and application of narrow-band biphotons in cold atom ensembles

Chang Liu, Hong Kong University of Science and Technology

As a standard method for producing correlated photon pairs (biphotons), spontaneous parametric down-conversion in nonlinear crystal usually has a wide bandwidth (terahertz) and very short coherence time (pico-seconds). Within spontaneous four-wave mixing process in cold atom ensembles, here we present a method for producing narrow-band (megahertz) Stokes and anti-Stokes paired photons.