IQC-QuICS Math and Computer Science SeminarExport this event to calendar

Thursday, October 7, 2021 — 10:00 AM EDT

Bounding quantum capacities via partial orders and complementarity
Christoph Hirche, Technische Universität München and National University of Singapore

Calculating quantities such as the quantum or private capacity of a quantum channel is a fundamental, but unfortunately a generally very hard, problem. A well known class of channels for which the task simplifies is that of degradable channels, and it was later shown that the same also holds for a potentially bigger class of channels, the so called less noisy channels. Based on the former, the concept of approximately degradable channels was introduced to find bounds on capacities for general channels. We discuss how the idea can be transferred to other partial orders, such as less noisy and more capable channels, to find potentially better capacity bounds. Unfortunately these are not necessarily easy to compute, but we show how they can be used to find operationally meaningful bounds on capacities that are based on the complement of the quantum channel and might give a deeper understanding of phenomena such as superadditivity. Finally, we discuss how the framework can be transferred to quantum states to bound the one-way distillable entanglement and secret key of a bipartite state. 

Join the seminar on Zoom!
Meeting link:  https://umd.zoom.us/j/91230236736?pwd=Uk5zalFSTnZUQnhZQkFaN0ZnL05XUT09

Add event to calendar

Apple   Google   Office 365   Outlook   Outlook.com   Yahoo

This virtual seminar is jointly sponsored by the Institute for Quantum Computing and the Joint Center for Quantum Information and Computer Science.


If you are interested in presenting at a future seminar, please email either Daniel Grier (daniel.grier@uwaterloo.ca) or Hakop Pashayan (hpashaya@uwaterloo.ca).

S M T W T F S
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
  1. 2021 (53)
    1. December (3)
    2. November (7)
    3. October (5)
    4. September (3)
    5. August (4)
    6. July (4)
    7. June (5)
    8. May (3)
    9. April (4)
    10. March (5)
    11. February (4)
    12. January (6)
  2. 2020 (31)
    1. December (2)
    2. November (5)
    3. October (4)
    4. September (3)
    5. August (2)
    6. June (4)
    7. April (1)
    8. March (3)
    9. February (5)
    10. January (2)
  3. 2019 (139)
  4. 2018 (142)
  5. 2017 (131)
  6. 2016 (88)
  7. 2015 (82)
  8. 2014 (94)
  9. 2013 (91)
  10. 2012 (122)
  11. 2011 (117)
  12. 2010 (41)
  13. 2009 (4)
  14. 2008 (1)
  15. 2005 (1)
  16. 2004 (3)