Friday, July 5, 2019 — 1:00 PM EDT

Two-photon and Three-photon Parametric Interactions in Superconducting Microwave Circuits

Sandbo Chang

Parametric processes in a microwave system are a source of nonclassical radiation with a number of potential applications in quantum information processing. We have implemented and experimentally verified a source of entangled microwave fields. Implementing a tunable, multimode microwave resonator with 3 modes in the common 4-8 GHz range, we performed two-mode parametric down-conversion between pairs of modes and observed the induced correlations in their voltage quadratures. With the system gain and noise calibrated using a shot noise tunnel junction, we have verified pairwise entanglement among the frequency modes. By introducing a second pump tone, we have demonstrated that it is also possible to generate genuine tripartite entanglement between all three modes. 
 
Further, advancing to higher-order parametric processes has been an on-going challenge. In particular, a long-sought goal in quantum optics has been third-order spontaneous parametric down-conversion (SPDC), where photons are directly created in triplets. We report the generation of microwave signals from third-order SPDC in a multimode parametric cavity when pumping both a single mode and three coupled modes. By pumping at the triple frequency of a single mode, we observe a phase-space distribution with a non-Gaussian profile which shows strong skewness in the quadrature amplitude distribution.  By pumping at the sum frequency of three modes, we observe non-zero coskewness between the quadrature amplitudes of the modes. These phase-dependent three-mode correlations are observed even though the two-mode covariance between any two of the modes is zero. This suggest the existence of a nontrivial three-mode continuous variable interference. These types of non-Gaussian states have been suggested as a resource enabling universal quantum computation with continuous variables. The multimode states may also be useful for three-party quantum communication protocols such as quantum secret sharing. 
Location 
QNC - Quantum Nano Centre
1201
200 University Avenue West

Waterloo, ON N2L 3G1
Canada

S M T W T F S
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
  1. 2020 (2)
    1. August (1)
    2. June (1)
    3. May (1)
  2. 2019 (126)
    1. December (1)
    2. November (2)
    3. October (6)
    4. September (5)
    5. August (10)
    6. July (17)
    7. June (14)
    8. May (15)
    9. April (15)
    10. March (11)
    11. February (20)
    12. January (12)
  3. 2018 (148)
    1. December (8)
    2. November (20)
    3. October (10)
    4. September (10)
    5. August (10)
    6. July (11)
    7. June (9)
    8. May (13)
    9. April (16)
    10. March (17)
    11. February (14)
    12. January (13)
  4. 2017 (135)
  5. 2016 (94)
  6. 2015 (85)
  7. 2014 (97)
  8. 2013 (92)
  9. 2012 (125)
  10. 2011 (117)
  11. 2010 (41)
  12. 2009 (4)
  13. 2008 (1)
  14. 2007 (1)
  15. 2005 (1)
  16. 2004 (3)