Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Friday, November 10, 2023 (all day)

Quantum Innovators 2023

Quantum Nano Centre, 200 University Ave West, Room QNC 0101
Waterloo, ON, CA N2L 3G1

The Institute for Quantum Computing (IQC) now offers two different Quantum Innovators workshops to bring together the most promising young postdoctoral fellows.

Join us from November 6–8 for the theoretical stream, and from November 8–10 for the experimental stream.

Participants may choose to attend just their stream, or attend both streams across the five days.

These workshops held at IQC, University of Waterloo, are partly funded by the Canada First Research Excellence Fund (CFREF) as part of the Transformative Quantum Technologies research initiative.


Schedule

Monday, November 6
Tuesday, November 7
Wednesday, November 8
Thursday,  November 9
Friday, November 10
 

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

Monday, November 20, 2023 2:30 pm - 3:30 pm EST (GMT -05:00)

Nature-Inspired Nanotechnologies

IQC Seminar - Jong-Souk Yeo, Yonsei University

Quantum Nano Centre, 200 University Ave West, Room QNC 0101
Waterloo, ON, CA N2L 3G1

Biomimetic or nature-Inspired technologies are referring to the emerging fields where innovations are strongly inspired by the wisdom from nature or biological systems. Multiple levels of approaches are feasible from nature-inspiration – adaptation of how nature works, adoption of what nature provides, or replication of natural processes and functionalities for eco-friendly, sustainable, and highly efficient technologies. In this talk, nature-inspired approaches will be introduced for the nano-bio and nano-IT convergence research in the areas of nanostructure-cell interactions [1], nano-bio sensorics [2], biomimetic optical nanostructures [3], stretchable electronics [4], quantum plasmonics [5], and neuromorphic semiconductor technologies. Along with the research, recent efforts at Yonsei University will be introduced about the School of Integrated Technology where research and education are organically integrated for the technology convergence, and Yonsei Science Park where innovation ecosystem is established for IT-Bio Cluster Hub hosting Global Bio Campus and IBM quantum computer. This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ICT Consilience Creative program (IITP-2019-2017-0-01015) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation), the Ministry of trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (Project No. P0019630) and by the Human Frontier Science Program (RGP0047/2019).

Tuesday, November 21, 2023 12:00 pm - 1:00 pm EST (GMT -05:00)

Quantum Today: The Quantum Ethics Project

Live on YouTube

Join us for Quantum Today, where we sit down with researchers from the University of Waterloo’s Institute for Quantum Computing (IQC) to talk about their work, its impact and where their research may lead.

In this special session, we’ll be joined by Joan Arrow and Özge Gülsayin of the Quantum Ethics Project, a team of researchers exploring the intersection of quantum and society. We’ll discuss how to advocate for the responsible and inclusive development of quantum technologies through education and research, and why an ethics lens is important in even the early stages of technological innovation.

 

Thursday, November 23, 2023 10:00 am - 11:00 am EST (GMT -05:00)

Mitacs Globalink Research Award (Quantum Stream) webinar

Online webinar through Microsoft Teams

The University of Waterloo and Mitacs will be holding a joint webinar on Thursday, November 23rd at 10am to share information about their new Globalink Research Award (Quantum stream), which provides funding for bilateral student travel with international university labs.

In this session, Amanda Green and Etienne Pineault, Senior Advisors with Mitacs, will provide information and updates on how to leverage Mitacs funding to build collaborative research projects with international university partners. 

Following the presentation, we will answer your questions about finding a partner, deciding on Mitacs eligibility and navigating program requirements (including how to work with our team to submit successful funding applications). Regan Child, International Grants and Contracts Manager with the Office of Research, will be on hand to offer assistance.

Wednesday, January 31, 2024 12:00 pm - 1:00 pm EST (GMT -05:00)

IQC Student Seminar Featuring Amolak Ratan Kalra

Arithmetic and Synthesis of Quantum Circuits

Research Advancement Centre, 475 Wes Graham Way, Room RAC 2009, Waterloo, ON, CA N2L 6R2

In this talk I will introduce some basic aspects of quantum circuit synthesis over various gate sets for qubits and qutrits. The main reference for this work is: https://arxiv.org/pdf/2311.08696.pdf 
 
I will also talk about the relationship between synthesis, SIC-POVMs and magic states. This is work done with Dinesh Valluri, Michele Mosca, Jon Yard, Sam Winnick and Manimugdha Saikia.
Monday, February 5, 2024 2:30 pm - 3:30 pm EST (GMT -05:00)

Achieving quantum sensing limits in noisy environment

IQC Colloquium - Sisi Zhou, The Perimeter Institute

Quantum-Nano Centre, 200 University Ave West, Room QNC 0101 Waterloo, ON CA N2L 3G1

 Quantum metrology studies estimation of unknown parameters in quantum systems. The Heisenberg limit of estimation precision 1/N, with N being the number of probes, is the ultimate sensing limit allowed by quantum mechanics that quadratically outperforms the classically-achievable standard quantum limit 1/√N. The Heisenberg limit is attainable using multi-probe entanglement in the ideal, noiseless case. However, in presence of noise, many quantum systems only allow a constant factor of improvement over the standard quantum limit. To elucidate the noise effect in quantum metrology, we prove a necessary and sufficient condition for achieving the Heisenberg limit using quantum controls. We show that when the condition is satisfied, there exist quantum error correction protocols to achieve the Heisenberg limit; when the condition is violated, no quantum controls can break the standard quantum limit (although quantum error correction can be used to maximize the constant-factor improvement). We will also discuss the modified sensing limits when only restricted types of quantum controls can be applied.