PhD Seminar
Two-photon and Three-photon Parametric Interactions in Superconducting Microwave Circuits
Sandbo Chang
Sandbo Chang
Hemant Katiyar
One-out-of-two (1-2) oblivious transfer is a cryptographic primitive, in which a sender holds two bits, x0 and x1, and a receiver receives one of them, in such a way that the receiver does not know both bits, and the sender does not know which bit the receiver obtained. While information-theoretical security for quantum versions of such protocols is not possible, it is of interest to examine possible security bounds, which previous work has shown to be set at 0.749 in “complete” protocols employing pure symmetric states.
Nonlocality is a useful quantum resource in applications such as quantum key distribution and quantum random number generation. We study nonlocality in a multi-qubit model—quantum kicked top (QKT). This system is of particular interest because it displays regular behavior, bifurcations and chaotic behavior in the classical limit, and is one of the few chaotic systems that has been experimentally realized.
Join us for this week's IQC Student Seminar, featuring surprise speakers and a pizza lunch.
In a non-local game, two or more non-communicating, but entangled, players cooperatively try to win a game consisting of a one-round interaction with a classical referee. In this talk, I will describe a two-player non-local game with the property that an epsilon-close to optimal strategy requires the players to share an entangled state of dimension 2^{1/poly(epsilon)}.
Quantum information is very fragile, but clever quantum engineers aspire to use error correction to keep information intact. Topologically ordered phases—wherein the most exotic properties of quantum physics such as entanglement are protected within a strongly-interacting material—are currently being commandeered as quantum error-correcting codes for today’s quantum architectures. I’ll introduce these as well as a new generation of theoretical materials that promise to self-correct themselves.
Huichen Sun
Electromagnetically induced transparency and Autler-Townes splitting in superconducting quantum circuits
Josh Ruebeck
ψ-epistemic interpretations of quantum theory have a measurement problem
Carbon and its allotropes have been researched intensively for their potential applications in various fields including energy storage/generation, sensor technology, and wearable electronics. Graphene and graphene oxide have especially drawn attention during the last decade due their unique electrical, chemical, and mechanical properties.
The event will feature a panel of four speakers who will share how their agency or organization supports start-ups and commercialization of IP, including funding sources and services available to faculty and start-ups. Each panelist will provide a brief presentation and respond to a set of questions followed by a Q&A session. Informal networking will take place between 1:00pm and 1:30pm.
Moderator:
Tarra Weber