Ecosystem engineers
Many important ecological relationships are non-trophic. For example, beavers build dams that determine the hydrology, species composition, and productivity of entire regions. However, almost all ecological theory regarding species interactions and population regulation ignores relations that occur via an abiotic medium. She is engaged in developing and parameterizing models of “ecosystem engineers” in an effort to establish the importance of this pervasive phenomena.
Invasive species
The prediction of which species will become invasive, and which will which will go extinct is hampered by the failure to recognize the importance the variation of environmental conditions and ecosystem engineering. Positive autocorrelation in factors such as temperature might lead to “runs” of good or bad conditions that determine establishment probabilities and spread rates. Moreover, some species may modify environmental conditions such that their success in increased. For example, the aquatic plant Spartina alterniflora alters current flow, sedimentation rates, and ultimately the tidal inudation height of those coastal regions where it occurs. She develops predictive tools of these phenemona and test them using laboratory populations, and field data.
Biological control
Spatial structure in the environment, like the branching morphology of plants, may alter movement, predation, reproductive rates and ultimately, the dynamics, of predator-prey populations. The fundamental mechanism which causes these alterations appears to be the anomalously slow rates of displacement of randomly moving individuals in spatially complex environments. She's testing whether this "diffusion-limitation" mechanism occurs in a well-controlled, yet realistic experimental system with biological control implications (peas-aphids-insect predators). The work suggests that Prof. Cuddington and her group can design plants that optimise the ability of beneficial predators to control pests.
Philosophy of ecology
Professor Cuddington is interested in the role of metaphor and mathematics in shaping ideas about ecology. She also explores how theories change in the discipline, and what parsimony might mean in the context of ecological theory.