News

Filter by:

Limit to items where the date of the news item:
Date range
Limit to items where the date of the news item:
Limit to news where the title matches:
Limit to news items tagged with one or more of:
Limit to news items where the audience is one or more of:

In 2023, Professors William Anderson and Marc Aucoin supervised preliminary research on concussion biomarkers found in bodily fluids, particularly saliva.

Exploring concussion biomarker research

Initially, Shazia Tanvir, a research associate of Anderson’s, began exploring research on concussion biomarkers. She was later introduced to Andrew Cordssen-David, who was a Master of Business, Entrepreneurship and Technology student at the Conrad School of Entrepreneurship and Business at the time.

Cordssen-David was also a former student-athlete who played for the varsity men’s hockey team at the University of Waterloo and had experienced his share of concussions. Recognizing the potential impact of a saliva-based concussion test, Cordssen-David and Tanvir got to work, committing themselves to developing a new concept for a saliva-based concussion screening tool.

A new study by researchers at the University of Waterloo has uncovered a crucial mechanism in the evolution of regulatory systems in E. coli that could have far-reaching applications in cancer therapy and biomanufacturing for products such as insulin or mRNA vaccines.

The critical insight arose when the research team examined a regulatory mechanism near the tail end of a protein called PykF

“A helpful analogy to understand this mechanism is the speedometer in a car. When you're driving through a town, where there are dangers to avoid, you need to know how fast you're going, so the speedometer is important. But, if you're on an open stretch of road with no risks, you can throw the speedometer out the window and put the pedal to the metal,” said Dr. Christian Euler from the Department of Chemical Engineering. “The research opens up the potential to one day put a new stoplight on the road to limit growth rate.”

Ever heard of the phrase coined by Friedrich Nietzsche, “the devil is in the details”? Professors William Anderson and Boxin Zhao have advanced the battle against microplastic pollution by uncovering the intricate details of how microplastics degrade in the environment. Observation and understanding the fine details of microplastics are key to eradicating them from our environment.

The research group has been able to observe the degradation of micro and nanoplastics with unprecedented detail. In collaboration with the National Research Council (NRC) researchers leveraged 3D imaging technology, which allows for a much deeper understanding of the microplastic degradation process than traditional 2D microscopy.

This detailed observation is the first of its kind, demonstrating the potential of 3D imaging as a powerful tool in microplastic research.

Imagine a coat that harnesses solar energy to keep you warm on a brisk winter walk, or a shirt that seamlessly monitors your heart rate and temperature. Picture athletes wearing smart clothing that tracks their performance, all without the burden of bulky battery packs.

Professor Yuning Li's research group has developed a smart fabric with these remarkable capabilities. The fabric can potentially harvest energy, monitor health, and track movement.

The new fabric, designed by the research team, can convert body heat and solar energy into electricity, potentially enabling continuous operation without the need for an external power source. Additionally, different sensors that monitor temperature, stress, and more can be integrated into the material.

Professor Boxin Zhao is this year’s recipient of the Ontario Professional Engineering Association (OPEA) Research and Development Engineering Medal.

Administered by OPEA, the Research and Development Engineering Medal is awarded to individuals who have advanced engineering knowledge and have developed useful and novel applications. Zhao certainly fits the bill.

Zhao's research is at the frontier of surface science and engineering. His work focuses on innovative soft matter engineering and bionanomaterials research aimed at advancing sustainable manufacturing. This includes the development of smart polymers, advanced adhesives, and coating materials.

Azin Adibi has always had a passion for working in the field of polymer science. During high school, she won the prestigious Khwarizmi Youth Award for a project which developed biodegradable plastics from potato starch. This achievement further ignited her interest in polymer engineering, particularly in sustainable and green materials. As a result, she pursued research opportunities in this field and eventually immigrated to Canada to pursue a graduate degree in Chemical Engineering at the University of Waterloo.

“I was drawn to the University of Waterloo's Chemical Engineering program specifically due to the department's strong focus on polymer science and engineering, combined with the interdisciplinary approach of the Institute for Polymer Research and the Waterloo Institute for Nanotechnology, which offered me the ideal environment to explore my research interests,” says Adibi.

The ubiquitous nature of plastic pollution in our environment is an alarming concern. The breakdown of plastics into smaller sizes, ranging from micro- to nano-sized material, raises concerns about their toxicity to the environment and humans. The impact of nanoplastics, which are a thousand times smaller than microplastics on fish, marine life and human life is under intense investigation, however, mitigating options are quite limited.

A team of researchers led by Chemical Engineering Professor Tizazu Mekonnen, at the University of Waterloo, have leveraged their expertise in polymer engineering to tackle this critical challenge. Mekonnen’s research is in polymer sustainability, and it endeavours to reduce the carbon footprint of the plastics industry.

Nanotechnology Engineering alumna CT Murphy (BASc ’23) created CELLECT, a new start-up which aims to improve access to cervical cancer and HPV screening. CELLECT's technology uses nanomaterials in menstrual products to diagnose HPV and cervical cancer using menstrual blood, potentially eliminating the need for Pap smears.

Murphy’s fourth-year design project served as inspiration for their Masters thesis under the supervision of Chemical Engineering professor Marc Aucoin. Murphy was awarded the Waterloo Institute for Nanotechnology (WIN)-Velocity scholarship for the project. They also received funding from Velocity’s Up Start Program and Cornerstone Program.

Researchers at the University of Waterloo have developed a unique technique to create the Janus structures in liquids. Chemical Engineering Professor Milad Kamkar in collaboration with the University of British Columbia leads the first research to achieve this duality with liquids.

This breakthrough can be utilized in a multitude of applications. It could be used in environmental remediation, to clean up oil spills in water or for wastewater treatment. One side could be treated with super absorbent nanomaterial to soak up the oil, while the other side might contain catalysts to degrade the pollution.

Dr. Elisabeth Prince is a professor in the Department of Chemical Engineering who is working on a solution to the challenge of non-degradable and non-recyclable plastics. Her innovative research in advanced materials has the potential to make a significant impact on sustainability and environmental remediation. It also supports Canada's aim of achieving zero plastic waste by 2030.