Alumni

En français

Kimia Mohammadi's master’s thesis investigates the design of an 8-inch transceiver telescope capable of both transmitting and receiving quantum signals at 785 nm, as well as classical communications at 980 nm and 1550 nm, with higher efficiency than similar commercial options. This telescope is aimed to be one of the quantum ground stations that will test Quantum Key Distribution (QKD) protocols and other communication schemes with the Quantum Encryption and Science Satellite (QEYSSat), once it is launched in 2024.

Thursday, August 25, 2022 2:00 pm - 3:00 pm EDT (GMT -04:00)

Publicly Verifiable Quantum Money from Random Lattices

Andrey Boris Khesin - Massachusetts Institute of Technology

Publicly verifiable quantum money is a protocol for the preparation of quantum states that can be efficiently verified by any party for authenticity but is computationally infeasible to counterfeit. We develop a cryptographic scheme for publicly verifiable quantum money based on Gaussian superpositions over random lattices. We introduce a verification-of-authenticity procedure based on the lattice discrete Fourier transform, and subsequently prove the unforgeability of our quantum money under the hardness of the short vector problem from lattice-based cryptography.

Wednesday, August 24, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Sarah Li

Dynamic qubit allocation and routing for constrained topologies by CNOT circuit re-synthesis

Recent strides in quantum computing have made it possible to execute quantum algorithms on real quantum hardware. When mapping a quantum circuit to the physical layer, one has to consider the numerous constraints imposed by the underlying hardware architecture. Many quantum computers have constraints regarding which two-qubit operations are locally allowed. For example, in a superconducting quantum computer, connectivity of the physical qubits restricts multi-qubit operations to adjacent qubits [1]. These restrictions are known as connectivity constraints and can be represented by a connected graph (a.k.a. topology), where each vertex represents a distinct physical qubit. When two qubits are adjacent, there is an edge between the corresponding vertices.

EvolutionQ, a leading quantum-safe cybersecurity company founded and led by Executive Director of the Institute for Quantum Computing Norbert Lütkenhaus, and IQC faculty member Michele Mosca, recently announced their latest partnership with SandboxAQ, an enterprise Saas company. This partnership was formed in relation to evolutionQ’s Series A funding and its recent grant of $7 million in funding, which will help organizations like SandboxAQ prepare for quantum computers.  

Wednesday, August 10, 2022 3:00 pm - 4:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Shayan Majidy

Noncommuting charges: Bridging theory to experiment

Noncommuting conserved quantities have recently launched a subfield of quantum thermodynamics. In conventional thermodynamics, a system of interest and an environment exchange quantities—energy, particles, electric charge, etc.—that are globally conserved and are represented by Hermitian operators. These operators were implicitly assumed to commute with each other, until a few years ago. Freeing the operators to fail to commute has enabled many theoretical discoveries—about reference frames, entropy production, resource-theory models, etc. Little work has bridged these results from abstract theory to experimental reality. This work provides a methodology for building this bridge systematically: we present a prescription for constructing Hamiltonians that conserve noncommuting quantities globally while transporting the quantities locally. The Hamiltonians can couple arbitrarily many subsystems together and can be integrable or nonintegrable. Our Hamiltonians may be realized physically with superconducting qudits, with ultracold atoms, and with trapped ions.

Wednesday, July 27, 2022 8:00 am - 8:00 am EDT (GMT -04:00)

IQC Student Seminar featuring Xi Dai

Dissipative landau Zener transition in the weak and strong coupling limits

Landau Zener (LZ) transition is a paradigm to describe a wide range of physical phenomenon. Dissipation is inevitable in realistic devices and can affect the LZ transition probabilities. I will describe how we can model the effect of the environment depending on whether it is weakly or strongly coupled to the system. I will also present our experimental results where we found evidence of crossover from weak to strong coupling limit.

Wednesday, July 20, 2022 8:00 am - 8:00 am EDT (GMT -04:00)

IQC Student Seminar featuring Connor Kapahi

Generation and detection of spin-orbit coupled neutron beams

Structured waves and spin-orbit coupled beams have become an indispensable probe in both light and matter-wave optics [1-2], for neutron specifically, showing distinct scattering dynamics for some samples [3-4]. We present a method of generating neutron orbital angular momentum (OAM) states utilizing 3He neutron spin filters along with four specifically oriented triangular coils and magnetic field shielding. These states are verified via their spin-dependent intensity profiles [5]. The period and OAM number of these spin-orbit states can be altered dynamically via the magnetic field strength within the coils and the total number of coils to tailor the neutron beam towards a particular application or specific material [6].

Wednesday, June 29, 2022 12:00 pm - 12:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Ernest Tan

Developments in device-independent cryptography

Device-independent cryptography connects the foundational topic of Bell inequalities to the operational task of achieving secure cryptography. With significant progress being made in Bell test experiments, various avenues for further developing device-independent cryptography have been opened. I will give an overview of some background and recent developments in the field, as well as some research questions that should be of interest going forward.

Wednesday, June 29, 2022 2:00 pm - 2:00 pm EDT (GMT -04:00)

Revealing new facets in experimental quantum information processing with photons

IQC Alum Lecture Series: Urbasi Sinha, Raman Research Institute

In this talk, we cover different interesting aspects of experimental photonic quantum information processing that have been recently explored at the Quantum Information and Computing lab at RRI, Bangalore. We discuss our experiment on the first loophole free violation of the Leggett Garg Inequalities (LGI) as well as the Wigner form of the same (WLGI)[1].