Current students

Monday, July 18, 2016 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Michael Walter

Quantum information in tensor networks

Michael Walter, Stanford University

In this talk, we explore how quantum information is encoded in tensor networks. To this end, we study the properties of random tensor networks with large bond dimension. We find that, from the perspective of quantum information theory, entanglement emerges from the geometry of the network by a multipartite entanglement distillation process.

Tuesday, July 12, 2016 12:00 pm - 12:00 pm EDT (GMT -04:00)

Seminar: Jonathan Oppenheim

Quantum thermodynamics - a review

Jonathan Oppenheim, University College London

I review recent results in quantum thermodynamics. This includes the emergence of many second laws at the micro-scale, fully quantum fluctuation relations for work and for states, a proof of the third law of thermodynamics applicable to erasing a bit of memory, and a grand canonical ensemble for non-commuting conserved quantities. Progress has been made using tools from quantum information theory.

Monday, July 11, 2016 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Jess Riedel

Where are the branches in a many-body wavefunction?

Jess Riedel, Perimeter Institute

When the wavefunction of a macroscopic system (such as the universe) unitarily evolves from a low-entropy initial state, we expect that it develops quasiclassical "branches", i.e., a decomposition into orthogonal components each taking well-defined, distinct values for macroscopic observables. Is this decomposition unique? Can the number of branches decrease in time?

Wednesday, June 8, 2016 1:30 pm - 1:30 pm EDT (GMT -04:00)

Seminar: Tom Stace

Correlated decay in driven quantum systems

Tom Stace, University of Queensland, Australia

Gate defined quantum dots are "artificial atoms", with well defined energy levels. They interact strongly with microwave resonators, and with the solid-state environment in which they live. These systems can exhibit population inversion, single-atom masing and other phenomena familiar to the quantum optics community. The environment also produces higher-order correlated decay processes, which are typically not included in quantum-optical Lindblad master equations.

Monday, June 27, 2016 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Robert Myers

Information, Holography & Gravity

Robert Myers, Perimeter Institute

In science, new advances and insights often emerge from the confluence of different ideas coming from what appeared to be disconnected research areas. The theme of my talk will review an ongoing collision between the three topics listed in my title which has been generating interesting new insights about the nature of quantum gravity, as well as variety of other fields, such as condensed matter physics and quantum field theory.

Friday, June 24, 2016 2:00 pm - 2:00 pm EDT (GMT -04:00)

Seminar: Bhaskaran Muralidharan

The role of dual-nuclear baths on singlet-triplet dynamics in a double quantum dot

Bhaskaran Muralidharan, Indian Institute of Technology Bombay

A deeper understanding of electronic transport phenomena at the nanoscale is a cross-disciplinary effort that intertwines quantum dynamics, electronic structure and statistical physics.