Current undergraduate students

In an exhilarating convergence of education and quantum information, Quantum for Educators unfolded its 9th annual class from December 1 to 3, 2023. Hosted by the Institute for Quantum Computing (IQC) at the University of Waterloo, this professional development workshop left an indelible mark on secondary school science teachers passionate about bringing the marvels of quantum information science and technology into their classrooms.

En francais

Sometimes, new scientific discoveries can be made from looking at well-known methods or experimental techniques in new ways. This is the basis for new research from Dr. Alan Jamison, a faculty member at the Institute for Quantum Computing (IQC) and the University of Waterloo’s Department of Physics and Astronomy, and his collaborators at the Massachusetts Institute of Technology (MIT).

En francais

The Institute for Quantum Computing (IQC) and the Department of Physics and Astronomy in the Faculty of Science at the University of Waterloo would like to congratulate Dr. Thomas Jennewein on his appointment to the Canada Excellence Research Chair (CERC) Program, which he will hold at Simon Fraser University (SFU) in British Columbia.

En francais

Last week, the Institute for Quantum Computing (IQC) welcomed over 20 promising postdoctoral fellows from around the world to Waterloo as part of the ninth annual Quantum Innovators workshop.

Split into two streams focused on theoretical and experimental research, speakers covered topics ranging from fault-tolerance and quantum cryptography to quantum defects in diamonds and atomic arrays, and many more topics spanning cutting edge quantum information research.

Live on YouTube

Join us for Quantum Today, where we sit down with researchers from the University of Waterloo’s Institute for Quantum Computing (IQC) to talk about their work, its impact and where their research may lead.

In this special session, we’ll be joined by Joan Arrow and Özge Gülsayin of the Quantum Ethics Project, a team of researchers exploring the intersection of quantum and society. We’ll discuss how to advocate for the responsible and inclusive development of quantum technologies through education and research, and why an ethics lens is important in even the early stages of technological innovation.


Quantum Nano Centre, 200 University Ave West, Room QNC 0101
Waterloo, ON, CA N2L 3G1

The Institute for Quantum Computing (IQC) now offers two different Quantum Innovators workshops to bring together the most promising young postdoctoral fellows.

Join us from November 6–8 for the theoretical stream, and from November 8–10 for the experimental stream.

Participants may choose to attend just their stream, or attend both streams across the five days.

These workshops held at IQC, University of Waterloo, are partly funded by the Canada First Research Excellence Fund (CFREF) as part of the Transformative Quantum Technologies research initiative.


Monday, November 6
Tuesday, November 7
Wednesday, November 8
Thursday,  November 9
Friday, November 10

Add event to calendar

Apple  Google  Office 365  Outlook  Yahoo  

Neutron Scattering Investigations of Three-Dimensional Topological States

Physics, 200 University Ave West, Room PHY 352
Waterloo, ON, CA N2L 3G1

Magnetic skyrmions represent a unique class of topological magnet characterized by nanometric swirling spin-textures which possess a non-trivial Berry curvature. The combination of their topological stability, unique transport properties, and emergent dynamics has made skyrmions the forerunner for novel spintronic high-density memory and ultra-low power logic device applications. In this thesis, we explore the development and application of various neutron scattering tomography and structured neutron beam techniques for three-dimensional investigations of bulk magnetic topological materials and their defect-mediated dynamical phenomena. Characterization of the disordered multi-phase bulk skyrmion material, Co8Zn8Mn4, was performed through detailed SANS measurements over the entire temperature-magnetic field phase diagram of the material as a function of a dynamic skyrmion ordering sequence. 2D SANS images in combination with micromagnetic simulations reveal a novel disordered-to-ordered skyrmion square lattice transition pathway which represents a new type of non-charge conserving topological transition. In the metastable skyrmion triangular lattice phase, dynamical field-dependent skyrmion responses showed an exotic memory phase in spite of hysteresis protocols involving field-induced saturation into the ferromagnetic phase. Three-dimensional examinations of skyrmion stabilization mechanisms and their dynamical defect pathways were explored using a novel SANS tomography technique which processes multi-projection neutron scattering images as its input. Application of the technique to the ordered thermal equilibrium skyrmion triangular lattice phase yielded the first three-dimensional visualizations of a bulk skyrmion lattice. The reconstructions unveiled a host of exotic skyrmion features, such as branching, segmented, twisting, and filament structures, mediated by three-dimensional topological transitions through two different emergent monopole (MP)-antimonopole (AMP) defect pathways. Finally, the direct identification and determination of topological features and defects in bulk micromagnetic materials, without a priori knowledge of the sample, was explored using holographic approaches for the generation of neutron helical waves. Linear neutron waves in a conventional SANS setup were input on microfabricated gratings which consist of arrays of various q-fold fork-dislocation phase-gratings with nanometric spatial dimensions. Far-field scattering images exhibited doughnut intensity profiles centered on the first diffraction orders, thereby demonstrating the tunable generation of topological neutron states for phase- and topology-matched studies of quantum materials. The amalgamation of these works demonstrates the development and application of novel tools for direct investigations of bulk topological magnetic materials, while uncovering a diverse collection of skyrmion energetics, disorder-dependent dynamics, and three-dimensional topological transition defect pathways. These methods and results open the door to a new generation of neutron scattering techniques for the probing of exotic topological interactions and the complete standalone characterization of quantum materials and their topological phenomena.


Friday, October 20, 2023

Quantum Q&A with Shayan Majidy

En francais

Recently, Shayan Majidy was lead author of the perspective article Noncommuting conserved charges in quantum thermodynamics and beyond in Nature Review Physics, which surveys results across a subfield Majidy works in, including three of his recent papers, and discusses the future opportunities in this field of research. In this edition of ‘Quantum Q&A’, we’ve asked him to tell us  more about this new article.

En francais

Two faculty members at the Institute for Quantum Computing (IQC) have received prestigious recognition by their peers for the outstanding contributions they have made to physics. Dr. Dmitry Pushin and Dr. Graeme Smith are newly elected as 2023 Fellows of the American Physical Society.