quantum computing

Thursday, October 27, 2022 10:00 am - 11:00 am EDT (GMT -04:00)

Molecular single photon sources for quantum communication and enhanced sensing

IQC Seminar featuring Michael Wilke, McGill University

The pioneering experiments by Hanbury and Twiss are considered by many as the beginnings of experimental quantum optics. These experiments are now particularly relevant in the context of quantum photonics and the characterization of single photon sources.
cont.

Thursday, October 8, 2020 3:00 pm - 3:00 pm EDT (GMT -04:00)

Quantum Frontiers Distinguished Lecture

From Laser Cooling to Quantum Chemistry

Alan JamisonLasers are used in factories for burning through metal and in movies for blowing up space ships. But in the lab, we use them to cool atoms down to within one billionth of a degree of absolute zero.

Monday, March 18, 2019 11:00 am - 11:00 am EDT (GMT -04:00)

Operating noisy quantum computers

Joel Wallman, University of Waterloo

Significant global efforts are currently underway to build quantum computers. The two main goals for near-term quantum computers are finding and solving interesting problems in the presence of noise and developing techniques to mitigate errors. In this talk, I will outline and motivate an abstraction layer needed to reliably operate quantum computers under realistic noise models, namely, a cycle consisting of all the primitive gates applied to a quantum computer within a specified time period.

Wednesday, February 20, 2019 11:00 am - 11:00 am EST (GMT -05:00)

A microwave optomechanical circuit with parametric mechanical driving

Shun Yanai, Delft University of Technology

Microwave optomechanical circuits have been demonstrated in the past years to be powerful tools for both, exploring fundamental physics of macroscopic and massive quantum objects as well as being promising candidates for novel on-chip quantum limited microwave devices. In this work, we explore a microwave optomechanical device consisting of a coplanar microwave cavity coupled to a mechanical high quality factor nanobeam resonator.

Friday, February 8, 2019 2:00 pm - 2:00 pm EST (GMT -05:00)

The potential applications of quantum computation in exploration geophysics

IQC and the Department of Physics at the University of Waterloo welcome Shahpoor Moradi, University of Calgary

Quantum computation has been developed as a computationally efficient paradigm to solve problems that are intractable with conventional classical computers. Quantum computers have the potential to support the simulation and modeling of many complex physical systems, not just quantum ones, significantly more rapidly than conventional supercomputers.

Friday, December 7, 2018 2:00 pm - 2:00 pm EST (GMT -05:00)

Quantum Advantage in Learning Parity with Noise

Daniel Kyungdeock Park, Korea Advanced Institute of Science and Technology

Machine learning is an interesting family of problems for which near-term quantum devices can provide considerable advantages. In particular, exponential quantum speedup is recently demonstrated in learning a Boolean function that calculates the parity of a randomly chosen input bit string and a hidden bit string in the presence of noise, the problem known as learning parity with noise (LPN).

Tuesday, October 2, 2018 1:00 pm - 1:00 pm EDT (GMT -04:00)

Client-friendly continuous-variable blind and verifiable quantum computing

Nana Liu, Centre for Quantum Technologies

We present a verifiable and blind protocol for assisted universal quantum computing on continuous-variable (CV) platforms. This protocol is highly experimentally-friendly to the client, as it only requires Gaussianoperation capabilities from the latter. Moreover, the server is not required universal quantum-computational power either, its only function being to supply the client with copies of a single-mode non-Gaussian state. Universality is attained based on state-injection of the serverʼs non-Gaussian supplies.

Thursday, August 9, 2018 1:00 pm - 1:00 pm EDT (GMT -04:00)

Quantum computing at Alibaba Group

Yaoyun Shi, Director, Alibaba Quantum Laboratory (AQL)

I will take this opportunity to share with the Waterloo quantum community the thinkings behind Alibaba Group's quantum computing program and our main activities. Questions and comments from the audience are welcome.

About the speaker: Yaoyun Shi is a computer scientist trained at Beijing University, Princeton, and Caltech. He taught at University of Michigan before moving to Alibaba to launch its quantum computing program.

Thursday, May 31, 2018 2:30 pm - 2:30 pm EDT (GMT -04:00)

Scaling up superconducting quantum computers

David P. Pappas, National Institute of Standards and Technology (NIST)

A brief history and overview of the requirements to guide the research and development for high-coherence superconducting quantum circuits will be given. The main focus will be on materials development at NIST. Topics will include identifying and mitigating loss due to amorphous two-level systems at interfaces and how to scale the fabrication of small aluminum-oxide tunnel junctions. The junctions were studied with atom probe microscopy to get an understanding of where the oxidation occurs.