Future students

Colloquium: Zhengcheng Gu, The Chinese University of Hong Kong

Searching for p+ip topological superconducting (SC) state has become a fascinating subject in condensed matter physics, as a dream application awaits in topological quantum computation. In this talk, I will report the theoretical discovery of a p+ip SC ground state (coexisting with ferromagnetic order) in honeycomb lattice Hubbard model with infinite repulsive interaction at low doping(< 0.2), by using both the state-of-art Grassmann tensor product state(GTPS) approach and a quantum field theory approach.

Wednesday, November 8, 2017

Shaping photons on-demand

Experiment finds way to increase photon efficiency for quantum communications

A team of researchers at the Institute for Quantum Computing (IQC) demonstrated a new type of on-demand single photon generator that can shape photons to increase their efficiency when used in a quantum network.

Next-generation communication networks will rely on the transmission of quantum information. Single photons, as carriers of quantum information, will play an integral role in building these future networks.

The Institute for Quantum Computing is pleased to announce a call for entries to the Quantum Shorts flash fiction competition. The competition is open to stories up to 1000 words long that take inspiration from quantum physics and include the phrase “There are only two possibilities: yes or no”. The competition is free to enter, offering prizes of up to US $1500.

Monday, September 25, 2017 11:00 am - 11:00 am EDT (GMT -04:00)

Seminar: Aging and Domain Growth in the Spin Glass Copper Manganese

Daniel Tennant - University of Texas, Austin

I will report on dynamical magnetic susceptibility measurements of
both bulk and thin film samples of the spin glass Copper Manganese.
By studying the Thermoremanent Magnetization (TRM) of multi-layer thin
films of various thicknesses, we are able to show the maximum energy
barrier encountered during correlated spin flip transitions is cut off
by the thickness of the film and is independent of temperature. The
distribution of energy barriers is shown to follow from a hierarchical