Future students

Thursday, March 9, 2017 10:30 am - 10:30 am EST (GMT -05:00)

Seminar: Shalev Ben-David

The Power of Randomized and Quantum Computation

Shalev Ben-David, Massachusetts Institute of Technology

Randomized and quantum computing offer potential improvements over deterministic algorithms, and challenge our notion of what should be considered efficient computation. A fundamental question in complexity theory is to try to understand when these resources help; on which tasks do randomized or quantum algorithms outperform deterministic ones?

In this talk, I will describe some of my work investigating this question, primarily in the query complexity (blackbox) model.

Friday, March 10, 2017 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series:

Fabrication of Diamond Based Fabry-Perot Cavities: Boring is beautiful

Madelaine Liddy, IQC

Nitrogen-vacancy (NV) centers in diamond are promising candidates for acting as the nodes in a quantum network. Previous work has demonstrated the entanglement between two NV centers over a distance of 1.3km for the loophole-free bell test in 2015.

Monday, March 6, 2017 2:30 pm - 2:30 pm EST (GMT -05:00)

Colloquium: Pravesh Kothari

Quantum Entanglement, Sum-of-Squares and the Log-Rank Conjecture

Pravesh Kothari, Princeton University

This talk will be about a sub-exponential time algorithm for the Best Separable State (BSS) problem. For every constant \eps>0, we give an exp(\sqrt(n) \poly log(n))-time algorithm for the 1 vs 1-\eps BSS problem of distinguishing, given an n^2 x n^2 matrix M corresponding to a quantum measurement, between the case that there is a separable (i.e., non-entangled) state \rho that M accepts with probability 1, and the case that every separable state is accepted with probability at most 1-\eps.

Thursday, March 2, 2017 1:30 pm - 1:30 pm EST (GMT -05:00)

Seminar: Zhexuan Gong

Harnessing quantum systems with long-range interactions

Zhexuan Gong, University of Maryland, College Park

A distinctive feature of atomic, molecular, and optical systems is that interactions between particles are often long-ranged. Together with control techniques from quantum optics, these long-range interacting systems could be harnessed to achieve faster quantum information processing and to simulate novel quantum many-body phenomena. A

Monday, February 27, 2017 9:30 am - 9:30 am EST (GMT -05:00)

Seminar: Laura Mancinska

Harnessing quantum entanglement 

Laura Mancinska, University of Bristol 

The phenomenon of entanglement is one the key features of quantum mechanics. It can be used to attain functionality lying beyond the reach of classical technologies. In practice, however, finding the best way of harnessing entanglement for a given task is extremely challenging and one is often forced to resort to ad hoc methods. The mathematical structure of entanglement- enabled strategies is poorly understood and many basic questions remain open. This lack of understanding has prevented us from fully exploiting the advantages that entanglement can offer for operational tasks.

Friday, February 24, 2017 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series

Epitaxial Growth of Silicon Nanowires and Niobium Thin Films for Magnetic Resonance Force Microscopy

Michele Piscitelli

Magnetic Resonance Force Microscopy (MRFM) is an imaging technique enabling the acquisition of magnetic resonance images at nanometer scales. Single electron spin sensitivity has been demonstrated [1] and current MRFM research is focused on working towards achieving single nuclear spin sensitivity. In general, an MRFM setup requires a nano-scale source of high magnetic field gradients to modulate the sample spins and a cantilever-based detection scheme to measure their magnetic moment.

Monday, March 20, 2017 2:30 pm - 2:30 pm EDT (GMT -04:00)

Seminar: Rakesh Tiwari

Robust quantum optimizer with full connectivity

Rakesh Tiwari, McGill University

Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size as compared with classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation.

Thursday, March 2, 2017 12:00 pm - 12:00 pm EST (GMT -05:00)

Seminar: Penghui Yao

Expected communication cost of distributed quantum tasks

Penghui Yao, University of Maryland, Baltimore

Data compression is a fundamental problem in quantum and classical information theory. A typical version of the problem is that the sender Alice receives a classical or quantum) state from some known ensemble and needs to transmit it to the receiver Bob with average error below some specified bound. We consider the case in which the message can have a variable length and goal is to minimise its expected length. For the classical case, this problem has a well-known solution given by the Huffman coding.

Thursday, February 23, 2017 9:30 am - 9:30 am EST (GMT -05:00)

Seminar: Henry Yuen

Quantum entanglement through the lens of computation and cryptography 

Henry Yuen, University of California at Berkeley

Quantum entanglement was once a philosophical peculiarity in physics — Einstein famously derided it as spooky action at a distance. Alongside wave/particle duality and the uncertainty principle, entanglement was just another bizarre feature of quantum mechanics. However, the study of quantum computation and quantum information has established entanglement as central to the story that connects quantum physics, computer science, and information theory.