Future students

Monday, July 7, 2014 2:30 pm - 3:30 pm EDT (GMT -04:00)

Unruh: Quantum position verification (Crypto 2014)

Dominique Unruh, University of Tartu

Position verification allows us to verify the position of a device in space (e.g., for enabling access to location based services). Unfortunately, position verification is known to be insecure in principle using only classical cryptography. We show how position verification can be achieved using quantum communication.

Thursday, July 3, 2014 11:45 am - 12:45 pm EDT (GMT -04:00)

Kothari: Jordan's Lemma and quantum computing

Robin Kothari

I will talk about a classic lemma due to Jordan (1875) that is
frequently used in quantum computing.  Jordan's lemma says that given
any two orthogonal projectors, there is a way to partition the
underlying vector space into 1- and 2-dimensional subspaces that are
invariant under the action of both projectors.  This simple lemma has
applications in several areas of quantum computing.  In this talk will
discuss the lemma, its proof, and explain some selected applications in

Thursday, June 19, 2014 3:00 pm - 4:00 pm EDT (GMT -04:00)

Roetteler: Repeat-Until-Success: a new tool for quantum circuit synthesis

Martin Roetteler,  NEC Laboratories America

Recently, quantum circuits that are composed of unitary as well as probabilistic elements were employed for quantum synthesis and compilation tasks. In some cases, RUS designs led to implementations that on average are more efficient than the previously best known solutions based on unitary circuit designs. I will highlight some of the developments that are related to the synthesis of single-qubit operations and to the implementation of integer arithmetic on a quantum computer.

Tuesday, June 17, 2014 4:00 pm - 5:30 pm EDT (GMT -04:00)

Quantum Industry Lecture Series: Phil Kaye, Government of Canada

The lecturer will be Phil Kaye, a 2006 IQC graduate currently working at the Government of Canada. This lecture will be more informal and will focus on Phil's career path, how his PhD prepared him for his current position, and the challenges of working outside of academia.

For futher questions, please contact Corey Rae, IQC GSA President, crmcrae@uwaterloo.ca

Thursday, June 19, 2014 11:45 am - 12:45 pm EDT (GMT -04:00)

Shi: Physical Randomness Extractors

Yaoyun Shi, University of Michigan

How can one be certain that the output of an alleged random
number generator is indeed random? This question is important not
only for the efficiency and the security of information
processing, but also for understanding how intrinsically
unpredictable events are possible in Nature. Practical random
number generators have often been found to be insecure. All
existing theoretical solutions require a certain form of
independence among two or more sources of randomness, a condition

Monday, June 16, 2014 2:30 pm - 3:30 pm EDT (GMT -04:00)

Miller: Quantum random number generation from untrusted devices

Carl A. Miller, University of Michigan, Ann Arbor, USA

Recently Yaoyun Shi and I gave the first proof of security for robust exponential quantum randomness expansion. This talk will be an overview of the problem and a discussion of the techniques used in our proof.

A form of quantum weirdness is a key ingredient for building quantum computers according to new research from a team at the University of Waterloo’s Institute for Quantum Computing (IQC).

In a new study published in the journal Nature today researchers have shown that a weird aspect of quantum theory called contextuality is a necessary resource to achieve the so-called magic required for universal quantum computation.

Thursday, June 26, 2014 3:00 pm - 4:00 pm EDT (GMT -04:00)

Ganainy: Quantum-inspired photonic structures

Ramy El Ganainy, Michigan Technological University

Quantum physics is playing an ever increasing role in several interdisciplinary research fields. In this presentation, I will show how some of the elementary mathematics of quantum mechanics can be used to synthesize classical photonic structures having novel functionalities.