Future undergraduate students
Christoph Simon, University of Calgary
Quantum optical systems are well suited for pushing the boundaries of quantum physics. Two big goals in this context are the creation of entanglement over long distances and the observation of quantum effects on macroscopic scales. I will describe various theoretical and some experimental work in these directions.
Apply for QCSYS and discover how the physics and mathematics of quantum mechanics and cryptography merge into one of the most exciting topics in contemporary science – quantum cryptography.
- Engage in hands-on experiments and attend lectures
- Collaborate with renowned researchers
- Participate in group work and social activities
- Stay in a university residence with QCSYS counsellor
Frank Wilhelm-Mauch, Universität des Saarlandes, Germany
Readout plays a central role in most quantum information protocols, notably in fault tolerance. While the readout of supercondcuting qubits operating in the microwave regime has reached exquisite performance using Josephson Parametric Amplifiers, these ask for large technological overhead that is difficult to scale down. We will show how a recently introduced microwave photon counter, the Josephson Photomultiplier JPM can be used for qubit readout with much less overhead and even elementary data processing on chip.
Immanuel Bloch, Max Planck Institute of Quantum Optics
From Topological Bloch Bands to Long-Range Interacting Rydberg Gases - New Frontiers for Ultracold Atoms
Ultracold atoms in optical lattices have enabled to probe strongly interacting many-body phases in new parameter regimes and with powerful new observation techniques.
Erik Woodhead, The Institute of Photonic Sciences, Spain
Quantum key distribution (QKD) can be implemented in both so-called
entanglement-based (EB) and prepare-and-measure (PM) configurations. There is a certain degree of equivalence between EB and PM schemes from the point of view of security analysis that has been heavily exploited in the literature over the last fifteen years or so, where a given PM protocol is reduced to an equivalent EB protocol (following the BBM92 argument) whose security is then proved.
Tommaso Calarco, University of Ulm
Quantum technologies are based on the manipulation of individual degrees of freedom of quantum systems with exquisite precision. Achieving this in a real environment requires pushing to the limits the ability to control the dynamics of quantum systems of increasing complexity. Optimal control techniques are known to enable steering the dynamics of few-body systems in order to prepare a desired state or perform a desired unitary transformation.
Mario Berta, California Institute of Technology
The quantum capacity of a memoryless channel is often used as a single figure of merit to characterize its ability to transmit quantum information coherently. The capacity determines the maximal rate at which we can code reliably over asymptotically many uses of the channel. We argue that this asymptotic treatment is insufficient to the point of being irrelevant in the quantum setting where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder.
Matthew McKague, University of Otago, New Zealand
Is it possible to check a quantum computer's work? A quantum computation leaves behind no transcript, and for problems outside nondeterministic polynomial time (NP), it is not immediately clear whether we can verify that a quantum computation has been one correctly. Interactive proofs and self-testing offer a means of doing so.
Marzio Pozzuoli, RuggedCom
Abstract:
In 2001 RuggedCom was a fledging startup. A decade later it was bought by Siemens for nearly half a billion dollars. Mr. Pozzuoli, its founder, will discuss its path to success and the role played in that success by the Canadian experience and the strategies outlined in Geoffrey Moore’s iconic book “Crossing the Chasm”.
Biography:
Aleksander Kubica, California Institute of Technology
The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. In the talk, I will introduce these two models and show their equivalence in d dimensions. I will describe codes with or without boundaries, and explain what insights one gets in the former case by looking at the condensation of anyonic excitations on the boundaries. I will conclude with a recipe of how one can implement fault-tolerantly a logical non-Pauli gate in the toric code in d dimensions.