Future undergraduate students

Monday, March 16, 2015 11:00 am - 12:00 pm EDT (GMT -04:00)

Na Young Kim: Carbon Nanotube Transport and Exciton-Polariton Condensation

Na Young Kim, Stanford University

We in modern society are beneficiaries of advanced electronics, photonics and the combination of two. As an effort to develop new platforms of electronics, photonics and optoelectronics harnessing quantum nature, I have studied transport properties of carbon nanotubes, where long-range interaction plays a significant role. In photonics domain, I have been studying exciton-polaritons in a quantum-well-microcavity structure, where dynamical macroscopic condensation emerge via stimulated scattering process arising from exchange interactions.

Konstantinos Lagoudakis,  Stanford University

Light matter interactions lie in the heart of several phenomena of fundamental and applied interest. Both condensation of exciton polaritons in semiconductor microcavities as well as quantum information processing with charged quantum dots in micro-resonators rely on strong light matter interactions.

Thursday, April 30, 2015 11:00 am - 12:00 pm EDT (GMT -04:00)

Matthieu Nannini: Nanolithography using Thermal Probe AFM: principle and applications

Matthieu Nannini, McGill University

While IBM Zurich's millipede project of data storage did not
have the success anticipated it would, a new technology for nano
lithography was born. Since 2009, IBM Zurich has been refining their

Thursday, March 5, 2015 11:45 am - 12:45 pm EST (GMT -05:00)

Laura Mančhinska: Limits to catalysis in quantum thermodynamics

Laura Mančhinska, CQT, Singapore

Quantum thermodynamics is a research field that aims at fleshing out the ultimate limits of thermodynamic processes in the quantum regime. A complete picture of quantum thermodynamics allows for catalysts, i.e., systems facilitating state transformations while remaining essentially intact in their state, very much reminding of catalysts in chemical reactions. In this work, we present a comprehensive analysis of the power and limitation of such thermal catalysis.

Monday, March 2, 2015 11:00 am - 12:00 pm EST (GMT -05:00)

Thomas Babinec: Quantum Photonic Devices Based on Single Dopants in Solids

Thomas Babinec, Stanford University

Tremendous progress has been made in the development of high-purity semiconductor materials so that their optoelectronic properties can now be controlled at the level of a single active dopant1. These individual impurities, which are quantum systems embedded in a solid-state host, possess diverse applications in quantum information science and technology2. As a simple and noteworthy example, single photons emitted from an optically active dopant may be used to share secure bits via quantum cryptographic key distribution3.

Monday, March 9, 2015 2:30 pm - 3:30 pm EDT (GMT -04:00)

Andrew Briggs: The Oxford Questions – and some answers

Andrew Briggs, Oxford

At a conference in Oxford in 2010 a set of questions was formulated with a view to establishing an agenda for subsequent research in quantum reality. Some of these questions are open to experimental investigation. We have since performed tests of the Leggett-Garg inequality in two and in three level systems, in each case violating the condition for macrorealism. We are now addressing another of the questions in single molecule devices using nanofabricated gaps in graphene.

Tuesday, March 10, 2015 7:00 pm - 7:00 pm EDT (GMT -04:00)

Cybersecurity in a quantum world - will we be ready?

Public lecture by Michele Mosca

Emerging quantum technologies will change the way that our online information is stored and secured. To be cyber-safe we must be quantum-safe. It’s possible, but we need to start planning now if we want to be ready in time.

Ty Volkoff, University of California, Berkeley

Two measures of macroscopicity for quantum superpositions in countably infinite dimensional Hilbert space will be introduced: one depending on the optimal distinguishability of the components of the superposition under measurements of subsets of particles and another based on the ratio of the quantum Fisher information of the superposition to that of its components.

Friday, February 13, 2015 1:30 pm - 2:30 pm EST (GMT -05:00)

David McKay: High contrast interactions and photonic qubits using multimode cavity QED

David McKay, University of Chicago

Superconducting Josephson‐junction (JJ) qubits are an emerging technology for quantum information processing. These qubits can be engineered with strong coupling to two or three‐dimensional microwave cavities which implements the cavity quantum electrodynamics (QED)  paradigm ‐ coherent coupling of a two‐level system to a harmonic oscillator. Cavity QED enables high fidelity qubit state readout, cavity‐mediated two‐qubit gates, and storing quantum information in noise‐insensitive photonic states.