Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Tuesday, September 13, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

Quantum Perspectives: Computing

Quantum computing promises to dramatically alter how we solve many computational problems by controlling information encoded in quantum bits. With potential applications in optimization, materials science, chemistry, and more, building functional quantum computers is one of the most exciting challenges in research today. To build and use these devices, we need to precisely control quantum bits in the lab, understand the ability and limitations of quantum algorithms, and find new methods to correct for decoherence and other quantum errors.

Research in quantum computing is highly multidisciplinary, with important contributions being made from computer scientists, mathematicians, physicists, chemists, engineers, and more. In this panel, we’ll learn from three researchers at the forefront of the field studying experimental quantum devices, quantum algorithms, and quantum error correction:

  • Crystal Senko, Assistant Professor, Institute for Quantum Computing and the Department of Physics
  • Shalev Ben-David, Assistant Professor, Institute for Quantum Computing and Cheriton School of Computer Science
  • Michael Vasmer, Postdoctoral Researcher, Institute for Quantum Computing and Perimeter Institute for Theoretical Physics

Quantum Perspectives: A Panel Series celebrates 20 years of quantum at IQC. Over the past two decades, IQC’s leading quantum research has powered the development of transformative technologies, from ideas to commercialization, through research in theory, experiment and quantum applications. This year, we’re celebrating IQC’s 20th anniversary with a panel series exploring all perspectives of quantum, including sensing, materials, communication, simulation and computing.

Add event to calendar

Apple   Google   Office 365   Outlook   Outlook.com   Yahoo

Friday, September 16, 2022 12:00 pm - 2:00 pm EDT (GMT -04:00)

IQC-GSA BBQ at RAC

On behalf of the IQC-GSA, we invite you to the IQC RAC BBQ. We hope to see everyone on Friday, September 16th. Please bring your friends, advisors, group members, and batchmates! We are especially happy to welcome new members of IQC and we hope everyone will take this opportunity to interact with other IQC members and visit RAC.

Monday, September 19, 2022 1:30 pm - 3:30 pm EDT (GMT -04:00)

Quantum For Health Design Challenge Launch Event

TQT’s Quantum For Health (Q4Health), is open to all at the University of Waterloo, seeking opportunities where quantum can advance health.

On September 19, TQT will host a Q4Health Launch Event in the Mike and Ophelia Lazaridis Quantum-Nano Centre Rm 0101. This event will include descriptions of quantum for health case studies. Following the talks, there will be a meet and greet to assist in team building. Attendees will receive information updates and an opportunity to register and learn more about upcoming Lunch and Learn sessions.

Register by September 16 (for refreshment planning purposes). There will be limited onsite registration at the event.

Monday, September 26, 2022 2:30 pm - 3:30 pm EDT (GMT -04:00)

QUANTUM COMPUTATIONAL ADVANTAGE WITH A PROGRAMMABLE PHOTONIC PROCESSOR

Jonathan Lavoie, Experimental Physicist, Xanadu Quantum Technologies

A quantum computer attains computational advantage when outperforming the best classical computers running the best-known algorithms on well-defined tasks. No photonic machine offering programmability over all its quantum gates has demonstrated quantum computational advantage: previous machines were largely restricted to static gate sequences. I will discuss a quantum computational advantage using Borealis, the latest of Xanadu’s photonic processors offering dynamic programmability and available on the cloud. This work is a critical milestone on the path to a practical quantum computer, validating key technological features of photonics as a platform for this goal.

Thursday, October 6, 2022 3:00 pm - 4:00 pm EDT (GMT -04:00)

Multidimensional Quantum Walks, with Application to k-Distinctness

Stacey Jefferey - QuSoft

While the quantum query complexity of k-distinctness is known to be O(n^{3/4−1/4(2k−1)}) for any constant k≥4, the best previous upper bound on the time complexity was ~O(n^{1−1/k}). We give a new upper bound of ~O(n^{3/4−1/4(2k−1)}) on the time complexity, matching the query complexity up to polylogarithmic factors. In order to achieve this upper bound, we give a new technique for designing quantum walk search algorithms, which is an extension of the electric network framework. We also show how to solve the welded trees problem in O(n) queries and O(n^2) time using this new technique, showing that the new quantum walk framework can achieve exponential speedups.

Friday, October 14, 2022 2:30 pm - 3:30 pm EDT (GMT -04:00)

Seminar featuring Professor Richard Curry, University of Manchester

The ability to engineer the electrical, optical and magnetic properties of advanced materials on the nanoscale is of increasing importance to the development of future technologies. One approach to achieving this is through impurity doping, with increased control over the spatial resolution and isotopic purity enabled by the development of dedicated tools. In this talk the 'P-NAME' tool will be described, and the underlying principle surrounding its application for the development of doped systems for quantum technologies including qubits presented. cont.

Tuesday, October 18, 2022 5:00 pm - 6:00 pm EDT (GMT -04:00)

Informal seminar featuring Professor Anthony Leggett, University of Illinois

Professor Anthony Leggett - University of Illinois

One of the historically earliest proposals for implementing the idea of (partially) protected topological quantum computing involves the physical braiding of the Majorana fermions believed to exist in two-dimensional Fermi superfluids in which the order parameter has the so-called chiral ("p+ip") symmetry. (For many years a plausible candidate system was single-plane strontium ruthenate, but recent experiments have somewhat muddied the waters). The original theoretical paper on this topic (Ivanov 2001), and most of the subsequent literature on it, uses the Bogoliubov-de Gennes equations, thereby violating the principle of conservation of total particle number. In this informal talk I will report on some work with Yiruo Lin* which inter alia attempts to examine how far the standard conclusions continue to hold when we insist on conserving particle number.