Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Thursday, August 4, 2016 12:00 pm - 12:00 pm EDT (GMT -04:00)

Seminar: Sophie Laplante

Robust Bell inequalities from communication complexity

Sophie Laplante, Université Paris Diderot

The question of how large Bell inequality violations can be, for quantum distributions, has been the object of much work in the past several years. We say a Bell inequality is normalized if its absolute value does not exceed 1 for any classical (i.e. local) distribution.

Monday, August 8, 2016 2:30 pm - 2:30 pm EDT (GMT -04:00)

Colloquium: Ken Brown

Error Models and Error Thresholds

Ken Brown, Georgia Tech

The error threshold for fault-tolerant quantum computation depends
strongly on the error model.  Most calculations assume a depolarizing
model, which allows for efficient calculations based on random
applications of Pauli errors.  We have been exploring how the
threshold changes for both non-unital and coherent operations.  I will

Thursday, August 11, 2016 12:00 pm - 12:00 pm EDT (GMT -04:00)

Special seminar: Vincent Russo

Extended nonlocal games and monogamy-of-entanglement games

Vincent Russo, Institute for Quantum Computing

Two-player one-round games have served to be an instrumental model in theoretical computer science. Likewise, nonlocal games consider this model when the players have access to an entangled quantum state. In this talk, I will consider a broader class of nonlocal games (extended-nonlocal games), where the referee shares an entangled state along with the players.

Monday, August 15, 2016 2:30 pm - 2:30 pm EDT (GMT -04:00)

Seminar: Hugo Cable

Towards Integrated Photonics for Quantum Computation

Hugo Cable, University of Bristol, UK

I will give an overview of work at the Centre for Quantum Photonics towards implementation of large-scale linear-optical quantum computing (LOQC) using quantum photonics. Our current research addresses the key obstacles to scalable LOQC, namely overcoming nondeterminism, achieving loss tolerance, and manufacturability.

Thursday, August 18, 2016 3:00 pm - 3:00 pm EDT (GMT -04:00)

Seminar: Rotem Liss

On the geometry of entanglement

Rotem Liss, Technion – Israel Institute of Technology

Entanglement is an important concept in quantum information and computing. In this talk, I present a simple geometrical analysis of all rank-2 quantum mixed states. The analysis is complete for all the bipartite states, and is partial for all the multipartite states.