Seminar

Friday, November 30, 2018 11:00 am - 11:00 am EST (GMT -05:00)

Estimating outcome probabilities of quantum circuits using quasiprobabilities

Hakop Pashayan, The University of Sydney

We present a method for estimating the probabilities of outcomes of a quantum circuit using Monte Carlo sampling techniques applied to a quasiprobability representation. Our estimate converges to the true quantum probability at a rate determined by the total negativity in the circuit, using a measure of negativity based on the 1-norm of the quasiprobability. If the negativity grows at most polynomially in the size of the circuit, our estimator converges efficiently.

Tuesday, November 27, 2018 1:00 pm - 1:00 pm EST (GMT -05:00)

Dynamical control of superconductors and ultracold atoms

Ludwig Mathey, University of Hamburg

While traditional means of influencing material properties are static, I will present our recent studies of dynamical control of high-temperature superconductors via light pulses. Specifically, I will discuss both light enhanced superconductivity, for which we propose a parametric amplification mechanism, as well as light induced superconductivity. As a second platform, I will describe dynamics in driven cavity-BEC systems.

Dhinakaran Vinayagamurthy

Trusted-execution environments (TEE) like Intel SGX provide a promise for practical secure computations on users' sensitive data in untrusted computing environments like cloud and blockchains. TEEs are designed using a combination of hardware enforced access controls and cryptography. While there is extensive research on attacking and hardening the access control mechanisms, the advent of quantum computers also requires hardening the cryptography used by TEEs for their long-term security against quantum adversaries.

Monday, January 28, 2019 2:30 pm - 2:30 pm EST (GMT -05:00)

The European Spallation Source: The Next-Generation Neutron Facility

Ken Andersen, Neutron Instruments Division, European Spallation Source ERIC

The European Spallation Source is currently under construction in Lund, Sweden. It is designed to provide world-leading performance, with instruments optimized for the long-pulse time structure of the facility, making full use of the world’s brightest neutron beams for the study of materials ranging from biological systems and soft matter to engineering materials, structural chemistry and magnetism.

Thursday, November 22, 2018 2:00 pm - 2:00 pm EST (GMT -05:00)

Modeling Interactions between Hydrophobic Nanosheets and Lipid Membranes

Jun Fan, City University of Hong Kong

Two-dimensional nanomaterials could cause structural disruption and cytotoxic effects to cells, which greatly challenges their promising biomedical applications including biosensing, bioimaging, and drug delivery. Here, interactions between lipid liposomes and hydrophobic nanosheets is studied utilizing coarse-grained (CG) molecular dynamics (MD) simulations. The simulations reveal a variety of interaction morphologies that depend on the size and the orientation of nanosheets.

Friday, November 23, 2018 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series

Neutron whispering gallery

Dr Valery Nesvizhevsky, European Centre for Neutron Research, Institut Laue-Langevin

The "whispering gallery" effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. In 2010, we observed the quantum whispering gallery effect for cold neutrons and since then continue increasing the precision in these experiments.

Monday, November 19, 2018 2:30 pm - 2:30 pm EST (GMT -05:00)

Quantum proof systems for iterated exponential time, and beyond

Henry Yuen, University of Toronto

An outstanding open question in quantum information theory concerns the computational complexity of nonlocal games. in a nonlocal game, a classical verifier interacts with multiple players that cannot communicate, but are allowed to share entanglement. In a recent breakthrough result, Slofstra showed that the following problem is undecidable: given a nonlocal game, is there a quantum strategy for the players to win with probability 1?