Seminar

Wednesday, April 26, 2023 11:00 am - 12:00 pm EDT (GMT -04:00)

Quantum Matters Seminar Series: No, you have not discovered a Majorana Fermion

No, you have not discovered a Majorana Fermion

Abstract: Is what I tell myself. There was a time when I thought I may have discovered it, others did too. Around 2012 several groups including ours found evidence of these quantum excitations in electrical circuits containing nanowires of semiconductor covered by a superconductor. The dramatic signatures were peaks in conductance that appeared under conditions expected from theory for Majorana modes, which are their own anti-modes and may possess non-Abelian properties. But a few years later, similar features in the data were identified due to an interesting, but a more mundane effect - which we call trivial states such as Andreev bound states. Over time more and more data pointed at the trivial and not at the exotic explanation. But because Majorana claims kept coming, this led to some digging and even retractions. What we learned after 10 years is that we have a much better handle on what effects show up in these nanowires, which positions us well for the ultimate Majorana discovery which we should be able to tell apart from all the non-Majorana things we saw. The second lesson we learned is that materials quality of device constituents, superconductors and semiconductors, as well as how samples are fabricated - are the make-or-break factors for making this happen. So while  I cannot report an exciting physics discovery, I can walk you through the scientific process that took place, a 10-year event of independent value which taught me how to do science better.

Thursday, April 27, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

Quantum Today: Quantum Energy Teleportation – Activating Ground State Energy

Join us for Quantum Today, where we sit down with researchers from the University of Waterloo’s Institute for Quantum Computing (IQC) to talk about their work, its impact and where their research may lead.

Monday, April 10, 2023 10:30 am - 11:30 am EDT (GMT -04:00)

Accelerating Quantum Dynamics With Long-Range Interactions

IQC Special Seminar - Jeremy Young - JILA, University of Colorado

One of the major goals in the field of quantum science is to utilize the properties of quantum mechanics for applications in quantum computation, quantum simulation, and quantum sensing. In order to address this goal, a variety of different many-body quantum platforms have been developed. Many of these quantum platforms exhibit long-range interactions, particularly power-law interactions, including Rydberg atoms, polar molecules, and trapped ions, among others. This gives rise to a natural question: how does the long-range nature of these interactions affect the resulting quantum evolution? 
 

Wednesday, April 12, 2023 2:30 pm - 3:30 pm EDT (GMT -04:00)

Millimeter-Wave Optomechanical Circuits for Preparing Non-Gaussian States of Motion

IQC Special Seminar - Bradley Hauer, National Institute of Standards and Technology

In the current paradigm of quantum cavity optomechanics, the relatively weak parametric coupling between an electromagnetic cavity and a mechanical resonator is mediated by an external pump. While this strong cavity drive acts to enhance the optomechanical interaction, it obscures its intrinsic nonlinearity, restricting these systems to bilinear operations on Gaussian states. By increasing this coupling such that it dominates the decoherence rates of the system, one could instead use the fundamental optomechanical nonlinearity to prepare the mechanical resonator into complex, non-Gaussian states...

Thursday, April 6, 2023 3:00 pm - 4:00 pm EDT (GMT -04:00)

Collusion Resistant Copy-Protection for Watermarkable Functionalities

CS/Math Seminar - Jiahui Liu (UT Austin)

Copy-protection is the task of encoding a program into a quantum state to prevent illegal duplications. A line of recent works studied copy-protection schemes under ``1 -> 2 attacks'': the adversary receiving one program copy can not produce two valid copies. However, under most circumstances, vendors need to sell more than one copy of a program and still ensure that no duplicates can be generated. In this work, we initiate the study of collusion resistant copy-protection in the plain model. Our results are twofold:

Debanjan Chowdhury: The good, the bad and the strange: Unconventional metallic behaviour in the vicinity of Mott insulators

Abstract: In recent years, we have witnessed remarkable experimental breakthroughs in uncovering the intriguing properties of correlated metals in the vicinity of Mott transitions. Describing these phenomena theoretically remains an open challenge. This talk will focus on three recent examples of puzzling electronic behavior near Mott insulating phases and address the various conundrums. In the first part of the talk, I will discuss the microscopic origin of an unconventional T-linear resistivity with Planckian scattering in a quasi-two-dimensional “good” metal with long mean-free path, consisting of highly conducting metallic and Mott insulating layers, respectively. In the second part, I will address the origin of a low-temperature “bad” metallic behavior in the vicinity of a continuous bandwidth-tuned metal-insulator transition in a moiré semiconductor. I will end by presenting some new theoretical insights into the experimental observation of an anomalous particle-hole continuum and overdamped plasmon in the density response of cuprate “strange” metals. 

Wednesday, April 5, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Xi Dai

Landau-Zener tunneling: from weak to strong environment coupling

Abstract:

Landau-Zener tunneling, which describes the transitions in a two-level system during the passage through an anti-crossing, is a model applicable to a wide range of physical phenomena. Dissipation due to coupling between the system and the environment is an important factor in determining the transition rates. Using a superconducting tunable capacitively shunted flux qubit, we observe the crossover from weak to strong coupling to the environment. The weak coupling limit corresponds to small system-environment coupling and leads to environment-induced thermalization. In the strong coupling limit, environmental polarizations dress the system and transitions occur between the dressed states. Our results confirm previous theoretical studies of dissipative Landau-Zener tunneling in the weak and strong coupling limits, and motivate further work on understanding the intermediate regime. This work is relevant for understanding the role of open system effects in quantum annealing, where Landau-Zener transitions at small gaps, occurring in large scale systems, are important to understand for improving the success probability.

 

This talk is based on the preprint arXiv:2207.02017.

Wednesday, April 5, 2023 11:00 am - 12:00 pm EDT (GMT -04:00)

Quantum Matters Seminar Series: Strange metals from not-so-strange quasiparticles

Brad Ramshaw

Abstract: Strange metals have linear-in-temperature (T-linear) down to low temperature. Strange metals are found in many families of correlated electron materials, leading to the conjecture that a universal bound - the "Planckian" bound - limits the scattering rate of electrons to a value set by fundamental constants. If the Planckian bound exists, it would provide a natural explanation for why a host of seemingly disparate systems, including high-temperature superconductors and twisted bilayer graphene, all have T-linear resistivity. Perhaps more dramatically, T-linear resistivity suggests that electron-electron interactions are so strong that conventional concepts such as quasiparticles and Boltzmann transport do not apply in strange metals. I will present our work on the cuprate Nd-LSCO and the 5-layer superconducting nickelate that shows that conventional quasiparticle transport is alive and well, even in the strange metal regime where the Planckian bound is saturated. This suggests that we may not need to abandon the quasiparticle picture entirely, but that we need to better understand the source of scattering in these materials. 

Wednesday, March 29, 2023 2:00 pm - 3:30 pm EDT (GMT -04:00)

Towards a quantum Internet with single atoms in cavities

IQC Special Seminar - Olivier Morin, MAX PLANCK INSTITUTE OF QUANTUM OPTICS

Building a quantum internet requires to develop computing machines but also to connect them at various scales, e.g. via optical fibres. Although it is not yet known which physical platforms are suitable for this challenge, there is a consensus to say that light-matter interface will play an important role. ...

Tuesday, March 28, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Junan Lin

Characterizing states and measurements: principles and approaches

Abstract: The problem of separately characterizing state preparation and measurement (SPAM) processes has not been frequently discussed in the literature. In this talk, I will first review the theoretical challenge behind SPAM characterization due to a gauge freedom, and then describe two different principles that can be applied to get around it. The first one can be understood as an effective propagation of state preparation noise from the target system to an ancillary qubit, whereas the second one utilizes measurements and post-selection to reduce the state preparation noise and can be interpreted as a form of algorithmic cooling. For the first method, I will present experimental and simulation data obtained from real quantum processors. For the second method, I will analyze its overhead through an upper bound on the expected number of runs to achieve a given error-reduction ratio.