**Contact Info**

Department of Applied Mathematics

University of Waterloo

Waterloo, Ontario

Canada N2L 3G1

Phone: 519-888-4567, ext. 32700

Fax: 519-746-4319

PDF files require Adobe Acrobat Reader

Visit our COVID-19 information website to learn how Warriors protect Warriors.

Please note: The University of Waterloo is closed for all events until further notice.

Tuesday, March 29, 2016 — 10:00 AM EDT

MC 5417

Kris Rowe , Applied Mathematics, University of Waterloo

Simulation of Vortex Interactions With a Solid Wall Using Adaptive Mesh Refinement

One feature that is common to many fluid flows is that phenomena of interest often occur at disparate length scales, whether it be vortices interacting with a boundary layer, or shear instabilities on an internal gravity wave. It has been demonstrated in many studies that when performing computer simulations of fluid flows, one must ensure that sufficient resolution is used to capture the smallest scale features of the flow. If the smallest scale features of the flow occur in a small subset of the problem domain, however, much of the computational resources used for a simulation will be wasted where they are not needed. In order to address these kinds of problems, a class of algorithms known as adaptive mesh refinement (AMR) seek to use grid resolution only where it is needed. Upon a coarse base grid, areas of a fluid flow where small scale features occur are identified, and a hierarchy of successively finer grids is build until sufficient resolution is obtained. We give a thorough review of the adaptive mesh refinement algorithm for the incompressible Navier-Stokes equations presented in Martin, Colella, and Graves (2008) and connect their techniques to the literature for finite volume methods. The performance and scalability of their algorithm on a commodity computer cluster is studied in order to systematically choose optimal grid parameters. This algorithm is then used to perform a number of simulations of vortices interacting with a viscous boundary layer. Following Clercx and Bruneau (2006), the interaction of a vortex dipole with a solid wall is modelled: a problem which has been suggested as a difficult physical benchmark for incompressible Navier-Stokes solvers due to the resolution needed to obtain the correct behaviour for the flow. Second, the vortex dipole problem is extended into three dimensions, and the stability of a vortex tube colliding with a wall is examined. These results are then compared to the experimental work done by Harris and Williamson (2012). Lastly, the collision of an inclined vortex ring with a wall will be simulated. Emphasis is placed on the performance of AMR when compared to a traditional single grid model, and subsequently, the ability of AMR methods to model fluid flows using direct numerical simulation at higher Reynolds numbers than were previously possible.

**Contact Info**

Department of Applied Mathematics

University of Waterloo

Waterloo, Ontario

Canada N2L 3G1

Phone: 519-888-4567, ext. 32700

Fax: 519-746-4319

PDF files require Adobe Acrobat Reader

University of Waterloo

University of Waterloo

43.471468

-80.544205

200 University Avenue West

Waterloo,
ON,
Canada
N2L 3G1

The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land promised to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Indigenous Initiatives Office.