Future students

Thursday, March 22, 2018 1:30 pm - 1:30 pm EDT (GMT -04:00)

Quantum acoustics with superconducting qubits

Yiwen Chu - Yale University

The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects.

Monday, February 26, 2018 11:00 am - 11:00 am EST (GMT -05:00)

Quantum optimization using superconducting qubits: A new platform

Rakesh Tiwari, McGill University

Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example quantum annealing, based on the quantum tunnelling effect, has recently been shown to scale exponentially better with system size as compared with classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation.

Friday, March 23, 2018 11:45 am - 11:45 am EDT (GMT -04:00)

RAC1 Journal Club/Seminar Series

Sangil Kwon: Phase in Superfluids and Spontaneously Broken Gauge Symmetry

It is often said that superfluids (including superconductors) can be described by a macroscopic quantum wavefunction and their phase transition can be understood based on the concept of spontaneously broken gauge symmetry. This statement is not, however, trivial at all. In this seminar, I will discuss some conceptual problems that stem from applying the concept of spontaneously broken gauge symmetry to superfluids.

Thursday, February 22, 2018 7:00 pm - 7:00 pm EST (GMT -05:00)

Entangled: The series – QUANTUM + logic

Quantum mechanics reveals that at its core, the world is not as it seems – it is far more interesting.
 
In the quantum world, outcomes are counter-intuitive, differing from what we expect based on our everyday experiences. The particle physicist Richard Feynman remarked that this means we seem to have to walk “a logical tightrope” when we talk about a quantum system.  
 

Monday, January 29, 2018 2:30 pm - 2:30 pm EST (GMT -05:00)

Engineering magnetism and chiral edge state of quantum anomalous Hall system

Ke He, Tsinghua University

The quantum anomalous Hall (QAH) effect is a quantum Hall effect induced by spontaneous magnetization instead of an external magnetic field. The effect occurs in two-dimensional (2D) insulators with topologically nontrivial electronic band structure which is characterized by a non-zero Chern number. The experimental observation of the QAH effect in thin films of magnetically doped (Bi,Sb)2Te3 topological insulators (TIs) paves the way for practical applications of dissipationless quantum Hall edge states.

Friday, January 12, 2018 11:45 am - 11:45 am EST (GMT -05:00)

RAC1 Journal Club/Seminar Series

Brandon Buonacorsi - Modeling the Exchange Interaction in Silicon Quantum Dots

Silicon metal-oxide-semiconductor field effect transistor (MOSFET) quantum dots are promising candidates for scalable quantum computing using electron spin qubits due to their long coherence times, compact size, and ease of integration into existing fabrication technologies.  I will introduce how we fabricate these devices and describe the experimental characterizations we do to check the stability and tunability of our quantum dots.  In a double quantum dot device, two qubit gates are realized