Events

Filter by:

Limit to events where the title matches:
Limit to events where the first date of the event:
Date range
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Friday, November 30, 2018 11:00 am - 11:00 am EST (GMT -05:00)

Estimating outcome probabilities of quantum circuits using quasiprobabilities

Hakop Pashayan, The University of Sydney

We present a method for estimating the probabilities of outcomes of a quantum circuit using Monte Carlo sampling techniques applied to a quasiprobability representation. Our estimate converges to the true quantum probability at a rate determined by the total negativity in the circuit, using a measure of negativity based on the 1-norm of the quasiprobability. If the negativity grows at most polynomially in the size of the circuit, our estimator converges efficiently.

Li Liu

Following my previous seminar talk on embezzlement of entanglement, this talk introduces a more general version of the problem — self-embezzlement. Instead of embezzling a pair of entangled state from a catalyst, self-embezzlement aims to create two copies of the catalyst state using only local operators. 

Friday, December 7, 2018 2:00 pm - 2:00 pm EST (GMT -05:00)

Quantum Advantage in Learning Parity with Noise

Daniel Kyungdeock Park, Korea Advanced Institute of Science and Technology

Machine learning is an interesting family of problems for which near-term quantum devices can provide considerable advantages. In particular, exponential quantum speedup is recently demonstrated in learning a Boolean function that calculates the parity of a randomly chosen input bit string and a hidden bit string in the presence of noise, the problem known as learning parity with noise (LPN).

Thursday, December 13, 2018 2:30 pm - 2:30 pm EST (GMT -05:00)

Applied Mathematics Colloquium: Quantum Universe

Neil Turok, Perimeter Institute

Observations reveal the cosmos to be astonishingly simple, and yet deeply puzzling, on the largest accessible scales. Why is it so nearly symmetrical? Why is there a cosmological constant (or dark energy) and what fixes its value? How did everything we see emerge from a singular “point” in the past?

Friday, December 14, 2018 1:15 pm - 1:15 pm EST (GMT -05:00)

RAC1 Journal Club/Seminar Series

Wavelength selective thermal emitters using nitride quantum wells and photonic crystals

Dr. Dongyeon Daniel Kang, Kyoto University

Wavelength selective thermal emitters are highly desired for the development of the compact/energy-efficient spectroscopic sensing systems capable of detecting various gases such as COx, CH4, and NOx, which are strongly needed in environmental science, medical care, and other industrial applications. In addition, for the latter applications, dynamic control of thermal emission intensity is important for such emitters because synchronous detection can increase the signal-to-noise ratio significantly.