Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Thursday, December 1, 2022 12:00 pm - 1:00 pm EST (GMT -05:00)

Quantum Perspectives: Simulation

Quantum mechanics is the most successful theory of physics, giving us the rule book to model phenomenon at the sub-microscopic scale. Knowing the rule book doesn’t necessarily mean it’s easy to follow though. Calculating and modelling quantum systems like complex molecules or materials is computationally demanding for modern computers. However, by mimicking the system of interest with another quantum system, we can explore their properties efficiently and learn a great deal about quantum mechanics itself.

Friday, February 3, 2023 12:00 pm - 1:00 pm EST (GMT -05:00)

Quantum Today: Metamaterials for Broadband Light Absorption

Join us for Quantum Today, where we sit down with researchers from the University of Waterloo’s Institute for Quantum Computing (IQC) to talk about their work, its impact and where their research may lead.

Tuesday, November 21, 2023 12:00 pm - 1:00 pm EST (GMT -05:00)

Quantum Today: The Quantum Ethics Project

Live on YouTube

Join us for Quantum Today, where we sit down with researchers from the University of Waterloo’s Institute for Quantum Computing (IQC) to talk about their work, its impact and where their research may lead.

In this special session, we’ll be joined by Joan Arrow and Özge Gülsayin of the Quantum Ethics Project, a team of researchers exploring the intersection of quantum and society. We’ll discuss how to advocate for the responsible and inclusive development of quantum technologies through education and research, and why an ethics lens is important in even the early stages of technological innovation.

 

Wednesday, April 17, 2024 7:00 pm - 8:00 pm EDT (GMT -04:00)

Open Quantum Computing, One Atom at a Time

Rajibul Islam
Faculty, Institute for Quantum Computing
Associate Professor, Department of Physics and Astronomy, University of Waterloo
Co-founder, Open Quantum Design

Quantum-Nano Centre, 200 University Ave West, Room QNC 0101 Waterloo, ON CA N2L 3G1

Quantum computing promises to advance our computational abilities significantly in many high-impact research areas. In this period of rapid development, the experimental capabilities needed to build quantum computing devices and prototypes are highly specialized and often difficult to access. In this public talk, we'll discuss how to build quantum computing devices one atom a time using the ion-trap approach. We'll show how we build quantum bits out of individually isolated atoms, explore how we use them to simulate other complex systems, and showcase how we're building open-access hardware to advance research in this exciting field.

Thursday, July 4, 2024 10:00 am - 12:00 pm EDT (GMT -04:00)

Quantum Optomechanics Tutorial

Professor Brad Hauer, Institute for Quantum Computing

QNC building, 200 University Ave. Room 0101, Waterloo 

Join new IQC faculty member Professor Brad Hauer for a tutorial on quantum optomechanics and a preview of new research directions at IQC. This tutorial is designed for the USEQIP program to be accessible to advanced undergraduates, and all IQC members are welcome (no registration required).

Cavity optomechanics, which studies the interplay between confined electromagnetic fields and mechanical motion, has seen a flurry of activity over the past two decades. In particular, optomechanical devices have had great success in preparing, manipulating, and observing quantum states of motion in nanoscale mechanical resonators. With applications in quantum information and quantum sensing on the horizon, cavity optomechanical devices remain an exciting prospect for real-world quantum technologies, as well as probes of important physical quantities on both microscopic and cosmological scales.

In my tutorial, I will provide a brief overview of cavity optomechanics, describing both the theoretical fundamentals and physical implementations. Following this introduction, I will detail a number of recent experiments realizing quantum effects in mesoscale mechanical resonators, including ground state cooling and entanglement of their motion. I will also discuss how cavity optomechanics is being used to further our understanding of the universe through next-generation dark matter and gravity wave detectors. Finally, I will briefly discuss my own research studying newly developed mm-wave optomechanical circuits and how I plan to use these devices to continue advancing the field.