Events

Filter by:

Limit to events where the first date of the event:
Date range
Limit to events where the first date of the event:
Limit to events where the title matches:
Limit to events where the type is one or more of:
Limit to events tagged with one or more of:
Limit to events where the audience is one or more of:
Tuesday, August 29, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Shayan Majidy

Critical Phase and Spin Sharpening in SU(2)-Symmetric Monitored Quantum Circuits

Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size.

Reference https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.054307

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

Wednesday, September 13, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Chung-You (Gilbert) Shih

Programmable Individual Optical Addressing for Trapped-ion Quantum Information Processors

Trapped ions are among the most advanced platforms for quantum computation and simulation. Programmable, arbitrary, and precise control—usually through laser-induced light-matter interaction—is required to tune ion-ion interactions. These interactions translate into diverse parameters of the system under study. Current technologies grapple with scalability issues in large ion chains and with "crosstalk" due to micron-level inter-ion separation.

In this talk, we present our development of two optical addressing systems optimized for non-coherent and coherent quantum controls, respectively.

The first addressing system employs a reprogrammable hologram to modulate the wavefront of the addressing beam, thereby engineering the amplitude and phase profile of light across the ion chain. Our implementation compensates for optical aberrations in the system down to λ/20 RMS and exhibits less than 10−4 intensity cross-talk error. This results in more than 99.9% fidelity when resetting the state or 99.66% when reading out the state of an individual ion without influencing adjacent ions. This scheme can be readily extended to over a hundred ions and adapted to other platforms, such as neutral atom arrays.

Additionally, we introduce another addressing design, tailored for coherent quantum operations through Raman transitions. This design uses a mirrored acoustic-optical deflector (AOD) setup to optimize optical power scaling and sidestep the undesired site-dependent frequency shift commonly observed in AOD-based setups.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

Wednesday, September 20, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Shlok Ashok Nahar

Using Symmetries to Improve Quantum de Finetti Reductions

Quantum Nano Centre, 200 University Ave W, Room QNC 1201
Waterloo, ON, CA N2L 3G1

The analysis of quantum information processing protocols for generic states is challenging. In contrast, when the states are IID, i.e. the same in every round of the protocol, the analysis greatly simplifies. de Finetti reductions are important to reduce the analysis of quantum information processing tasks to the IID case, though this reduction has some cost associated with it. In this talk I will describe how IID-symmetries can be used to reduce the cost associated with the quantum de Finetti reductions.

Add event to calendar
Monday, October 2, 2023 2:00 pm - 3:00 pm EDT (GMT -04:00)

Beyond the Pipeline: Fostering Equity in Our Quantum Future

Kim de Laat, University of Waterloo

Quantum Nano Centre (QNC) Room 0101, 200 University Avenue West, Waterloo, ON

The field of quantum computing has a unique opportunity to pre-empt many of the inequities that have riddled AI and computer science. But radical technologies require new, radical solutions. In this talk, I take issue with the leaky pipeline metaphor as a way of structuring policy interventions concerning inequality in STEM fields. I outline three reasons why overreliance on the leaky pipeline metaphor is problematic: (1) it does not accurately represent the phenomenon it is meant to describe; (2) it is incomplete; and (3) it does not capture the full heterogeneity of experiences with inequality in STEM disciplines. I conclude the talk by sharing feedback from the quantum technology community concerning potential pitfalls in the pursuit of equity in quantum, and what we can do about it.

Wednesday, October 4, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Impromptu Whiteboard Poster Session

Impromptu Whiteboard Poster Session

Quantum Nano Centre (QNC) Room 1201, 200 University Avenue West, Waterloo, ON

This week’s student seminar will take place in the form of an impromptu whiteboard poster session, where attendees will be divided into groups and will discuss each other's current work using the whiteboard. This is to encourage students to talk about their work in progress, and practice communication skills by talking to non-experts (quantum is a big field!). As always, pizza will be provided for attendees after the seminar.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

IQC Seminar - Johannes Prell, Institute of Communication and Navigation, OSL German Aerospace Center (DLR) Oberpfaffenhofen, Germany

Quantum Nano Centre (QNC) Room 0101 200 University Ave West, Waterloo Ontario

Satellite based laser communication technology both classical and QKD (Q uantum K ey D istribution is gaining popularity and being increasingly commercial i zed . Optical ground stations serve as the receiv ing station in satellite to ground scenarios. The DLR institute of Communications and Navigation hosts an experimental optical ground station for research and demonstration purpose. Supporting increasingly demanding technical requirements from current and futu re missions and technology demonstrations, it was decided to replace the 40cm Cassegrain telescope an equip the new one with Nasmyth Ports for direct experiments, a Coudé Path to the lab and an Adaptive Optics System . This new 80cm (31.5inch) main apertur e diameter i nstrument is a Nasmyth Design Ritchey Chretien telescope The special feature is the C oudé P ath which is guiding the received light onto an optical table in a lab oratory room below the telescope mount (see figure 1 The usage of the Coudé Path is new implemented at DLR and offers a wide possibility for several different experiments with the same setup The optical propaga tion through a custom designed lens system inside the coudé path is optimized for wavelength s used for optical communication, like 589nm, 850nm, 1064nm and 1550nm. It is possible to use the setup as a receiving station and also as a transmitting facility f or beacon lasers . The transmitt ing system ca n be installed either beside the telescope as a side installation or even launched from the optical table through coudé path and telescope directly

The optical Experiment table in the lab is equipped with an Adaptive Optics ( System including fibe r coupling. This system uses a Shack Hartmann Wave front sensor, designed to match a deformable mirror in the “ f ried g eometry”. The system couples the light into a single mode fibe r , which can be con nected to a coherent or Quantum encrypted communications system. [ The telescope itself has four usable Nasmyth ports The first one is reserved for the coudé pa th, t wo others are equipped with optical benches directly on the telescope, and on the last one has a fixed classical laser communication receiving setup including two cameras one visible light and one infra red and a signal receiving united is installed References

[1] Andrew Paul Reeves, Ilija R. Hristovski, Alexandru Octavian Duliu, Stefanie H äu sler, Hela Friew Kelemu, Pia Lützen, Florian Moll, Eltimir Peev, Juraj Poliak, Amita Shrestha, Joana Sul Torres; Adaptive Optics Corrected Bi Directional Links with a Geo Stationary Satellite from the DLR KN Optical Ground Station Figure 1 OGSOP System Overvi ew

Wednesday, October 25, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Shreyas Natarajan

Computational Entanglement Theory

Quantum Nano Centre, 200 University Ave W, Room QNC 1201
Waterloo, ON, CA N2L 3G1

Quantum entanglement is an important resource that contributes to the potential of quantum computers over classical computers. It turns out to be an interesting idea to quantify entanglement in states, and there are different approaches to this. We can, for example, consider the number of Bell states that are required to approximately produce a given state or the number of Bell states that can be produced from the state - these correspond to the 'entanglement cost’ and ‘distillable entanglement' respectively. Throughout this, we bear in mind a picture where Alice (A) and Bob (B) own a shared state, and are only able to perform LOCC operations on their respective systems. In practice, however, computational complexity must be taken into account. I will explain some recent developments towards taking computational complexity into account for these operational measures, as well as introducing pseudo-entanglement, and hopefully some quantum cryptography.

Add event to calendar

Apple  Google  Office 365  Outlook  Outlook.com  Yahoo  

Wednesday, November 1, 2023 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar Featuring Junqiao Lin

Tracial embedded strategy: lifting MIP* tricks to MIPco

Quantum Nano Centre, 200 University Ave West, Room QNC 1201
Waterloo, ON CA N2L 3G1

Quantum non-local games have been an important object of study for the operator algebra and computer science community due to the recent ground-breaking result MIP*=RE. Although the majority of the study has been focused on the tensor product model in the non-local games literature recently, the commuting operator model is another model that is also considered in the non-local literature, and the difference between these two models forms the basis for disproving the famous Connes embeddings conjecture. In this talk, I will introduce a new set of strategies for the commuting operator model, the tracial embedded strategy, and sketch the proof that every strategy in the commuting operator model can be approximated by this set of strategies. Using this new characterization, I will present some similarities between the tensor product model and the commuting operator model in the complexity theory realm. This talk is based on the paper "Almost synchronous correlation in the commuting operator model".

Monday, November 20, 2023 2:30 pm - 3:30 pm EST (GMT -05:00)

Nature-Inspired Nanotechnologies

IQC Seminar - Jong-Souk Yeo, Yonsei University

Quantum Nano Centre, 200 University Ave West, Room QNC 0101
Waterloo, ON, CA N2L 3G1

Biomimetic or nature-Inspired technologies are referring to the emerging fields where innovations are strongly inspired by the wisdom from nature or biological systems. Multiple levels of approaches are feasible from nature-inspiration – adaptation of how nature works, adoption of what nature provides, or replication of natural processes and functionalities for eco-friendly, sustainable, and highly efficient technologies. In this talk, nature-inspired approaches will be introduced for the nano-bio and nano-IT convergence research in the areas of nanostructure-cell interactions [1], nano-bio sensorics [2], biomimetic optical nanostructures [3], stretchable electronics [4], quantum plasmonics [5], and neuromorphic semiconductor technologies. Along with the research, recent efforts at Yonsei University will be introduced about the School of Integrated Technology where research and education are organically integrated for the technology convergence, and Yonsei Science Park where innovation ecosystem is established for IT-Bio Cluster Hub hosting Global Bio Campus and IBM quantum computer. This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ICT Consilience Creative program (IITP-2019-2017-0-01015) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation), the Ministry of trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (Project No. P0019630) and by the Human Frontier Science Program (RGP0047/2019).