Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 5198884567, ext. 32700
Fax: 5197464319
PDF files require Adobe Acrobat Reader
Visit our COVID19 information website to learn how Warriors protect Warriors.
Please note: The University of Waterloo is closed for all events until further notice.
MC 6496
Yangang Chen
Applied Mathematics, University of Waterloo
Numerical Solutions of HamiltonJacobiBellman Equations with Applications
This research proposal focuses on HamiltonJacobiBellman (HJB) equa tions, which are nonlinear controlled partial differential equations (PDEs). We are interested in constructing finite difference schemes that converge to the viscosity solutions of the HJB equations, and developing solvers, and furthermore, fast solvers, for the discretized equations.
We discuss two specific applications of the HJB equations. One is to solve a MongeAmp`ere equation by converting it to an equivalent HJB equation. Wide stencil scheme is applied to discretize the HJB equation. We prove that the numerical scheme is consistent, stable and monotone, and thus con verges to the viscosity solution. We apply this numerical scheme to image registration problem.
Another application of the HJB equations is the oligopolistic mean field game model in economics. The optimal lifetime profits of the companies in a mean field game can be determined by a system of PDEs that contains an HJB equation. Multigrid method is employed as the fast solver for the discretized equations.
In the end of the research proposal, we summarize our progress and pro pose some future research topics.
S  M  T  W  T  F  S 

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 5198884567, ext. 32700
Fax: 5197464319
PDF files require Adobe Acrobat Reader
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Indigenous Initiatives Office.