Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext. 32700
Fax: 519-746-4319
PDF files require Adobe Acrobat Reader
MC 6496
Alex Howse | Applied Math, University of Waterloo
Iterative and Multilevel Optimization Methods: the Tucker Tensor Decomposition Problem and Beyond
A tensor is a multidimensional array. The Tucker tensor decomposition is a way of representing a tensor as the product of a tensor and a set of matrices. The Tucker decomposition has applications in such areas as image classification, chemical analysis, and multi-way statistical analysis. Furthermore, by restricting the ranks of these matrices, we can create an approximation of this tensor with much lower storage costs.
In this talk we will briefly consider the methods of matrix manifold optimization, the alternating direction method of multipliers, and multilevel optimization, with a particular focus on how these methods may be used in the context of the Tucker tensor approximation and similar problems.
Contact Info
Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Phone: 519-888-4567, ext. 32700
Fax: 519-746-4319
PDF files require Adobe Acrobat Reader
The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within our Office of Indigenous Relations.