News

Filter by:

Limit to items where the date of the news item:
Date range
Limit to items where the date of the news item:
Limit to news where the title matches:
Limit to news items tagged with one or more of:
Limit to news items where the audience is one or more of:

Researchers at the University of Waterloo are taking a novel approach to tackle the critical issue of microplastic pollution in water systems. The research team is engineering bacteria that already exist in wastewater to break down Polyethylene terephthalate(PET).

Plastic waste in water systems is an urgent environmental concern. PET plastics degrade into microplastics that adversely impact the ecosystems of our lakes, rivers, and oceans.

Professor Marc Aucoin from the Department of Chemical Engineering and Professor Brian Ingalls from the Department of Applied Mathematics with PhD student Aaron Yip are developing a technique that enables wastewater bacteria to break the links between plastic molecules so PETs can be degraded.

Professors Aiping Yu and Michael Fowler have been named on the Highly Cited Researchers™ list from Clarivate. Researchers on that list have publications that rank in the top one percent of citations globally and are deemed influential in their respective fields.

Yu’s research expertise is in utilizing graphene for energy storage in Zinc-ion and Na-ion batteries to increase their energy and power density using 2D materials. As Director of the Applied Carbon Nanotechnology Laboratory, she is also focused on lithium battery recycling. Yu is also researching carbon dioxide conversion, using electrochemical cells to turn CO2 into small-chain chemicals like methane.

Researchers at the University of Waterloo can now make eco-friendly plastics using bacteria that feed on food scraps from your table. Unlike animals that store fat when they consume excess food, these bacteria store a biopolymer. Biopolymers are natural polymers produced by the cells of living organisms that are fully biodegradable. The biopolymer can be used in multiple applications, including single-use plastics.  

Utilizing food waste is beneficial to the environment as it typically generates methane and carbon dioxide when decomposing in landfills, contributing to greenhouse gases. 

Plastics produced using this new method have many potential applications. For example, in food packaging as a plastic film to cover meat.

A research group from the Department of Chemical Engineering, led by Professor Yverick Rangom, has made a breakthrough in lithium-ion battery design to enable extremely fast charging. With this novel technology, the batteries can charge from zero to 80 percent in just 15 minutes, a significant improvement over the current industry standard.

Batteries fabricated using this new strategy were shown to undergo 800 extreme fast charging cycles, a feat not possible with current EV batteries which limit charging times to prevent degradation.

The novel technology addresses major hurdles in the mass adoption of EVs: charging speed and cost.

Professor Christian Euler leads a Canadian research team that aims to valorize waste materials such as plastics, CO2 emissions, methane and other gases, and agricultural residues, converting them into valuable commodities and chemicals. The goal is to devise technologies that provide economic incentives for waste recycling, making sustainability a driver of profit rather than a cost burden for industry.

The research group received funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Social Sciences and Humanities Research Council (SSHRC) as part of the National Science Foundation Global Centers initiative. University of Waterloo Researchers are part of the Center for Innovative Recycling and Circular Economy (CIRCLE).  

As the planet faces the ongoing effects of climate change and the accumulation of pollution in every ecosystem it’s clear that the pace of human development is unsustainable. CIRCLE seeks to address these challenges through a multidisciplinary global collaboration.

Professors Michael Tam and Yuning Li have designed a solar-powered desalination device capable of utilizing over 93% of solar energy to produce fresh water from the sea via a thermal evaporation process.

This rate is five times higher than that of current technologies, making it a highly efficient solar-driven desalination system. With a production capacity of approximately 20 litres of fresh water per square meter per day, this device offers a sustainable solution to global freshwater scarcity.

Desalination of water is critical for many coastal nations to produce water for consumption and agricultural activities. Rapid population growth and increasing global water consumption by industry contribute to water scarcity.

Ever heard of the phrase coined by Friedrich Nietzsche, “the devil is in the details”? Professors William Anderson and Boxin Zhao have advanced the battle against microplastic pollution by uncovering the intricate details of how microplastics degrade in the environment. Observation and understanding the fine details of microplastics are key to eradicating them from our environment.

The research group has been able to observe the degradation of micro and nanoplastics with unprecedented detail. In collaboration with the National Research Council (NRC) researchers leveraged 3D imaging technology, which allows for a much deeper understanding of the microplastic degradation process than traditional 2D microscopy.

This detailed observation is the first of its kind, demonstrating the potential of 3D imaging as a powerful tool in microplastic research.

Professor Tizazu Mekonnen’s research group has developed polymer foam that absorbs and locks in oil, preventing groundwater contamination.

The team designed a novel material that can not only absorb hydrocarbon oil from oil spills but can also lock the oil in, preventing it from leeching into groundwater. The porous material designed from special tri-block co-polymers can absorb eight times its weight or 800% of oil upon direct contact.

Electric transformers and other industries have huge oil storage facilities containing thousands of litres of oil which can leak into groundwater due to unexpected accidents and natural disasters such as hurricanes, tornadoes or earthquakes. Groundwater contamination is extremely difficult to clean up. These accidents can lead to serious environmental damage, posing health hazards to wildlife, and people.

Imagine a coat that harnesses solar energy to keep you warm on a brisk winter walk, or a shirt that seamlessly monitors your heart rate and temperature. Picture athletes wearing smart clothing that tracks their performance, all without the burden of bulky battery packs.

Professor Yuning Li's research group has developed a smart fabric with these remarkable capabilities. The fabric can potentially harvest energy, monitor health, and track movement.

The new fabric, designed by the research team, can convert body heat and solar energy into electricity, potentially enabling continuous operation without the need for an external power source. Additionally, different sensors that monitor temperature, stress, and more can be integrated into the material.

A new reverse osmosis (RO) water system was installed in the Chemical Engineering undergraduate teaching labs in the Douglas Wright Engineering Building (DWE) this summer. The new RO system eliminates the need for a large amount of hazardous chemicals and manual operations required for the outdated existing unit while providing a quality and sustainable supply of deionized (DI) water for teaching and research in DWE. The unit was partially funded through the Sustainability Action Fund.