News

Filter by:

Limit to items where the date of the news item:
Date range
Limit to items where the date of the news item:
Limit to news where the title matches:
Limit to news items tagged with one or more of:
Limit to news items where the audience is one or more of:

Chemical engineering graduate student Ananya Muralidharan took first place in this year’s GradFlix competition! Three other chemical engineering graduate students were finalists!

GRADflix is an annual competition that invites graduate students to present their complex research in a way that is accessible to a wider audience. Graduate students create presentations using a combination of live footage, slideshows, and animations to showcase their work. A panel of judges from various fields at the University of Waterloo selects the top four videos, which receive cash prizes. Additionally, there is a Finalist’s Choice Award determined by voting from fellow participants.

Launched in 2018 by the University of Waterloo’s Graduate Studies and Postdoctoral Affairs (GSPA), GRADflix is funded by graduate students through the Graduate Studies Endowment Fund. Three other chemical engineering students were also finalists.

Imagine walking your dog in the middle of a blizzard or spending the day on a frigid ski hill and instead of wearing bulky layers, you have a winter coat that heats up autonomously!

New innovative cloth developed by a research group led by Professor Yuning Li requires no bulky batteries or manual controls, the warmth generated by the fabric comes entirely from solar energy, making it an environmentally friendly, self-sustaining solution for winter wear.

 Within 10 minutes of exposure to sunlight, the fabric’s temperature is able to rise by 30 degrees Celsius, keeping you cozy on a cold winter day.

Researchers have designed solar-powered smart fabric that not only warms up but also customizes its colour. A significant feature of this smart fabric fiber is its reversible colour-changing capability, which can monitor temperature fluctuations.

Professors Aiping Yu and Michael Fowler have been named on the Highly Cited Researchers™ list from Clarivate. Researchers on that list have publications that rank in the top one percent of citations globally and are deemed influential in their respective fields.

Yu’s research expertise is in utilizing graphene for energy storage in Zinc-ion and Na-ion batteries to increase their energy and power density using 2D materials. As Director of the Applied Carbon Nanotechnology Laboratory, she is also focused on lithium battery recycling. Yu is also researching carbon dioxide conversion, using electrochemical cells to turn CO2 into small-chain chemicals like methane.

A research group from the Department of Chemical Engineering, led by Professor Yverick Rangom, has made a breakthrough in lithium-ion battery design to enable extremely fast charging. With this novel technology, the batteries can charge from zero to 80 percent in just 15 minutes, a significant improvement over the current industry standard.

Batteries fabricated using this new strategy were shown to undergo 800 extreme fast charging cycles, a feat not possible with current EV batteries which limit charging times to prevent degradation.

The novel technology addresses major hurdles in the mass adoption of EVs: charging speed and cost.

Professors Michael Tam and Yuning Li have designed a solar-powered desalination device capable of utilizing over 93% of solar energy to produce fresh water from the sea via a thermal evaporation process.

This rate is five times higher than that of current technologies, making it a highly efficient solar-driven desalination system. With a production capacity of approximately 20 litres of fresh water per square meter per day, this device offers a sustainable solution to global freshwater scarcity.

Desalination of water is critical for many coastal nations to produce water for consumption and agricultural activities. Rapid population growth and increasing global water consumption by industry contribute to water scarcity.

Ever heard of the phrase coined by Friedrich Nietzsche, “the devil is in the details”? Professors William Anderson and Boxin Zhao have advanced the battle against microplastic pollution by uncovering the intricate details of how microplastics degrade in the environment. Observation and understanding the fine details of microplastics are key to eradicating them from our environment.

The research group has been able to observe the degradation of micro and nanoplastics with unprecedented detail. In collaboration with the National Research Council (NRC) researchers leveraged 3D imaging technology, which allows for a much deeper understanding of the microplastic degradation process than traditional 2D microscopy.

This detailed observation is the first of its kind, demonstrating the potential of 3D imaging as a powerful tool in microplastic research.

Professor Tizazu Mekonnen’s research group has developed polymer foam that absorbs and locks in oil, preventing groundwater contamination.

The team designed a novel material that can not only absorb hydrocarbon oil from oil spills but can also lock the oil in, preventing it from leeching into groundwater. The porous material designed from special tri-block co-polymers can absorb eight times its weight or 800% of oil upon direct contact.

Electric transformers and other industries have huge oil storage facilities containing thousands of litres of oil which can leak into groundwater due to unexpected accidents and natural disasters such as hurricanes, tornadoes or earthquakes. Groundwater contamination is extremely difficult to clean up. These accidents can lead to serious environmental damage, posing health hazards to wildlife, and people.

Imagine a coat that harnesses solar energy to keep you warm on a brisk winter walk, or a shirt that seamlessly monitors your heart rate and temperature. Picture athletes wearing smart clothing that tracks their performance, all without the burden of bulky battery packs.

Professor Yuning Li's research group has developed a smart fabric with these remarkable capabilities. The fabric can potentially harvest energy, monitor health, and track movement.

The new fabric, designed by the research team, can convert body heat and solar energy into electricity, potentially enabling continuous operation without the need for an external power source. Additionally, different sensors that monitor temperature, stress, and more can be integrated into the material.

Researchers from the Universitat Duisburg-Essen in Germany and the University of Cambridge arrived at the University of Waterloo in June to participate in ongoing graduate student training aimed at leveraging 2D materials for various manufacturing applications. This international collaboration is supported by an NSERC CREATE grant, with Professor Michael Pope from the Department of Chemical Engineering serving as lead Principal Investigator. Researchers from the Faculty of Engineering, the Faculty of Science and the Waterloo Institute for Nanotechnology are involved in the collaboration.

The Chemical Institute of Canada has awarded Professor Luis Ricardez Sandoval the D. G. Fisher Award in recognition of his significant contributions to the field of systems and control engineering. This prestigious award celebrates the lifetime achievements of exceptional researchers in Canada.

Ricardez-Sandoval spearheads research initiatives focused on optimal integration of planning, scheduling, control, and process design decisions for chemical and manufacturing systems in the presence of uncertainty. His pioneering work on CO2 capture and conversion technologies aims to mitigate carbon emissions thus promoting sustainability and circular carbon economy and employing first-principles modelling couples with multiscale modelling techniques for the design of novel catalyst materials and valuable chemical products, e.g. thin films. This research is supported through the development of theoretical and computational tools aimed to predict the behaviour of complex and emerging systems.