Future graduate students

Thursday, December 1, 2022 12:00 pm - 1:00 pm EST (GMT -05:00)

Quantum Perspectives: Simulation

Quantum mechanics is the most successful theory of physics, giving us the rule book to model phenomenon at the sub-microscopic scale. Knowing the rule book doesn’t necessarily mean it’s easy to follow though. Calculating and modelling quantum systems like complex molecules or materials is computationally demanding for modern computers. However, by mimicking the system of interest with another quantum system, we can explore their properties efficiently and learn a great deal about quantum mechanics itself.

Thursday, November 17, 2022 4:00 pm - 5:00 pm EST (GMT -05:00)

Quantum State Characterization for Benchmarking NISQ Devices

ZOOM online Seminar Featuring Ahmad Farooq, Ph.D. - Kyung Hee University

Reliable and efficient reconstruction of the quantum states under the processing of noisy measurement data is a vital tool in fundamental and applied quantum information sciences owing to communication, sensing, and computing. Noisy intermediate-scale quantum (NISQ) computers are expected to perform tasks that surpass the capability of the most powerful classical computers available today. ...

En français

Congratulations to Megan Byres who has been chosen as the recipient of the 2022 Raymond Laflamme and Janice Gregson Graduate Scholarship for Women in Quantum Information Science.

Thursday, November 10, 2022 3:30 pm - 4:30 pm EST (GMT -05:00)

SYNTHESIS: QUANTUM RESERVOIR COMPUTING, MACHINE LEARNING, AND ASTROMETRY.

IQC Seminar featuring Dr. Stephen Vintskevich

There are multiple challenging issues one must address to boost further the nascent field of quantum technologies. The most common are reducing noises’ affection on a given quantum protocol’s performance, performing well-controlled quantum operations, and developing general frameworks for mapping various practical problems into quantum algorithms performed in different quantum devices. ...

Wednesday, November 2, 2022 12:00 pm - 1:00 pm EDT (GMT -04:00)

IQC Student Seminar featuring Jose Polo Gomez

Measuring quantum fields with particle detectors and machine learning

Abstract: The model for measurements used in quantum mechanics (based on the projection postulate) cannot be extended to model measurements of quantum fields, since they are incompatible with relativity. We will see that measurements performed with particle detectors (i.e., localized non-relativistic quantum systems that couple covariantly to quantum fields) are consistent with relativity, and that they allow us to build a consistent measurement theory for QFT. For this measurement framework to be of practical use, we need to understand how can we measure specific properties of the field using a particle detector. I will show that there is a simple fixed measurement protocol that allows us to extract essentially all the information about the field that the detector gathers, and that this information can then be interpreted to study a specific targeted feature using machine learning techniques. Specifically, I will examine two examples in which we use a neural network to extract global information about the field (boundary conditions and temperature) performing local measurements, taking advantage of the fact that this global information is stored locally by the field, albeit in a scrambled way.

Wednesday, November 2, 2022 3:30 pm - 4:30 pm EDT (GMT -04:00)

Quasiparticle effects in transmons with gap-asymmetric junctions

Seminar featuring Giampiero Marchegiani - Technology Innovation Institute, Abu Dhabi

Single-particle excitations, known as Bogoliubov quasiparticles, threaten the operation of superconducting qubits. In this presentation, we theoretically revisit and generalize the qubit-quasiparticle interaction, including the gap asymmetry in Josephson junctions, which naturally arises from the deposition of aluminum layers with different thicknesses. ...